REPORT DOCUMENTATION PAGE Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

3. REPORT TYPE AND DATES COVERED
Final Report
ol IunqF -~ 3 ey 0Y

1. AGENCY USE ONLY ( Leave Blank) [ 2. REPORT DATE

4, TITLE AND SUBTITLE
ARO MURI BOWER
“Understanding Olfaction: From Detection to Classification”

5. FUNDING NUMBERS

G: DAAG55-98-1-0266

6. AUTHOR(S)
Dr. James M. Bower, Dr. Linda Buck, Dr. William Goddard III, Dr. Denise
Wilson, Dr. Nathan S. Lewis, Dr. Noam Sobel, and Dr. Gordon Shepherd

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

California Institute of Technology REPORT NUMBER
1200 E. California Blvd, M/C 127-72
Pasadena, CA 91125 65472

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
U. S. Army Research Office
P.O. Box 12211

Research Triangle Park, NC 27709-2211

3%514, 25-1L5-muk

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an
official Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13, ABSTRACT (Maximum 200 words)

The overall objective of this research project is to support a multidisciplinary approach to understanding the function of the
mammalian olfactory system across many different levels of scale. The members of the MURI collaboration represent disciplines
ranging from computational chemistry, to molecular and cellular biology, to systems and computational neuroscience. Working
together the objective is to shed light on structure/function relationships from the level of single olfactory receptor molecules to
the function of neural circuits in olfactory regions of the mammalian brain, to olfactory related perception and cognition. In
addition, the inclusion of faculty with chemical sensing and engineering expertise will allow information gleaned from biological
olfactory systems to be applied to the construciton of more sophisticated devices for detecting chemicals in the environment.

14. SUBJECT TERMS 15. NUMBER OF PAGES

60

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION CLASSIFICATION ABSTRACT

OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 39-18 298-102




1) Personnel supported over course of the entire project.

Dr. Nathan S. Lewis

Brian Sisk, graduate student
Ting Gao, postdoctoral fellow
Shawn Briglin, graduate student

Dr. William Goddard III

Dr. Spencer Hall, graduate student

Dr. Rene Trabanino, , graduate student
Dr. Wely Florinao, Senior Scientist
Dr. Mario Blanco, Senior Scientist

Dr. Gordon Shepherd

Dr. Michael Hines, Research Scientist

Dr. Perry Miller, Professor

Dr. Prakash Nadkarni, Assoc. Professor

Dr. Wei Chen, postdoctoral fellow (Shanghai); Assist. Prof. (Yale)
Dr. Minghong Ma, postdoctoral fellow (Columbia) Assist. Prof., U. Pennsylvania
Dr. Andrew Davison, postdoctoral fellow (Cambridge, U.K.)

Dr. Fuqiang Xu, postdoctoral fellow (China); Assoc. Res. Sci.

Dr. Chiquito Crasto, postdoctoral fellow (India)

Dr. Zhishang Zhou, postdoctoral fellow (China)

Dr. Michele Migliore, Visiting Scientist (Italy)

Dr. Shaoquin Zeng, postdoctoral fellow (China)

Dr Fan Jia, postdoctoral fellow (China)

Peter Bail, U Conn undergraduate

Dr. James M. Bower

(Dr.) Michael Vanier, graduate student
(Dr.) Alfredo Fontinani, graduate student
(Dr.) Chris Chee, graduate student

Dr. Xiaoshu Wang, postdoctoral fellow
Dr. Yoshi Kubota, postdoctoral fellow
(Dr.) Alex Protopapas, graduate student
(Dr.) Sharon Crook, graduate student

Dr. Linda Buck
Dr. Bettina Malnic, postdoctoral fellow
Dr. Mehran Sam, postdoctoral fellow

Dr. Noam Sobel
Natasha Young, research assistant
Brad Johnson, graduate student




2) List of relevant Manuscripts published during the project.

Dr. Nathan S. Lewis:

Michael C. Burl, Brian C. Sisk, Thomas P. Vaid, and Nathan S. Lewis, “Classification
Performance of Carbon Black-Polymer Composite Vapor Detector Arrays As a Function of
Array Size and Detector and Composition,” Sens. & Act., 2002, Vol 87, pp.130-149.

Eric S. Tillman, Michael Koscho, Robert H. Grubbs, and Nathan S. Lewis, “Enhanced
Sensitivity To and Classification of Volatile Fatty Acids Using Arrays of Linear
Poly(ethylenimine)-Carbon Black Composite Vapor Detectors,” Anal. Chem, 2003, Vol 75, pp.
1748-1753.

Alan R. Hopkins and Nathan S. Lewis, “Detection and Classification Characteristics of Arrays
of Carbon Black/Organic Polymer Composite Chemiresistive Vapor Detectors for the Nerve
Agent Simulants Dimethylmethylphosphonate and Diisopropylmethylphosponate” Chem. & Bio.
Sens. III, Patrick J. Gardner, Ed. 2002, Vol. 4722, pp. 86-97.

Shawn M. Briglin, Michael C. Burl, Michael S. Freund, Brian C. Sisk, Phillip Tokumaru, and
Nathan S. Lewis, “Array-based Carbon Black-polymer Composite Vapor Detectors for
Detection of DNT in Environments of Complex Analyte Mixtures,” Detection and Remediation
Technologies for Mines and Minelike Targets VII, J. Thomas Broach; Russell S. Harmon; Gerald
J. Dobeck; Eds, 2002, Proc. SPIE Vol 4742.

Brian C. Sisk and Nathan S. Lewis, “Estimation of Chemical and Physical Charactersistics of
Analyte Vapors Through Analysis of the Response Data of Arrays of Polymer-Carbon Black
Composite Vapor Detectors,” Sens. & Act., B, 2003, Vol. 96, pp. 268-282.

Eric S. Tillman and Nathan S. Lewis, “Mechanism of Enhanced Sensitivity of Linear
Poly(ethylenimine)-Carbon Black Composite Detectors to Carboxylic Acid Vapors”, Sens. &
Act., B, 2003, Vol. 96, pp. 329 - 342.

Shawn M. Briglin, Michael S. Freund, Brian C. Sisk, Nathan S. Lewis. “Array Based Carbon
Black-Polymer Composite Vapor Detectors for Detection of DNT in Environments Containing
Complex Analyte Mixtures” Mat. Res. Soc. Symp. Proc., 2002 Vol. 700.

Keith J. Albert, Nathan S. Lewis, Caroline L. Schauer, Gregory A. Sotzing, Shannon E. Stitzel,
Thomas P. Vaid, and David R. Walt, “Cross-Reactive Chemical Sensor Arrays”, Chem. Rev.,
2000,700, 2595-2626.

Gregory A. Sotzing, Jennifer N. Phend, Robert H. Grubbs, and Nathan S. Lewis, “Highly
Sensitive Detection and Discrimination of Biogenic Amines Utilizing Arrays of
Polyaniline/Carbon Black Composite Vapor Dectectors”, Chem. Mater., 2000, 12, 593-595.




Erik J. Severin, Brett J. Doleman, and Nathan S. Lewis, “An Investigation of the Concentration
Dependence and Response to Analyte Mixtures of Carbon Black/Insulating Organic Polymer
Composite Vapor Detectors” , Anal. Chem, 2000, 72, 658-688.

Greg A. Sotzing, Shawn M. Briglin, Robert H. Grubbs, and Nathan S. Lewis, “Preparation and
Properties of Vapor Detector Arrays Formed From Poly(3,4-ethylenedioxy)thiophene-
poly(styrene sulfonate)/Insulating Polymer Composites”, Anal. Chem , 2000, 72, 3181-3190.

Brett J. Doleman and Nathan S. Lewis, “Comparison of Odor Detection Thresholds and Odor
Discriminablities of a Conducting Polymer Composite Electronic Nose vs Mammalian
Olfaction”, Sens. & Act., B,, 2001, 72 (1), 41-50,

Adam J. Matzger, Carolyn E. Lawrence, Robert H. Grubbs, and Nathan S. Lewis,
“Combinatorial Approaches to the Synthesis of Vapor Dectector Arrays for an Electronic Nose”,
J. Comb. Chem., 2000, 2, 301-304.

Mike Burl, Brett J. Doleman, Amanda Schaffer, and Nathan Lewis, “Assessing the Ability to
Predict Human Percepts of Odor Quality from the Detector Responses of a Conducting Polymer
Composite-Based Electronic Nose,” Sens. & Act., B, 2001, 72 (2), 149-159.

Thomas P. Vaid, Michael C. Burl, and Nathan S. Lewis, “Comparison of the Performances of
Different Discriminant Algorithms in Analyte Discrimination Tasks Using an Array of Carbon
Black-Polymer Composite Vapor Detectors,” Anal. Chem, 2001, 73 (2), 321-331.

Alan Hopkins and Nathan S. Lewis, “Detection and Classification Characteristics of Arrays of
Carbon Black/Organic Polymer Composite Chemiresistive Vapor Detectors for the Nerve Agent
Simulant Dimethylmethylphosphonate and Diisopropylmethylphosponate,” Anal. Chem, 2001,
73 (5), 884-892

Shawn M. Briglin, Michael Freund, Phil Tokumaru, and Nathan S. Lewis, "Exploitation of
Spatiotemporal Information and Geometric Optimization of Signal/Noise Performance Using
Arrays of Carbon Black/Polymer Composite Vapor Detectors" Anal. Chem , 2002, 82 (1), 54-74.

Margaret A. Ryan and Nathan S. Lewis, “Low Power, Lightweight Vapor Sensing Using Arrays
of Conducting Polymer Composite Chemically-Sensitive Resistors,” Enantiomer, 2001. 6 (2-3),
159-170.

Thomas P. Vaid and Nathan S. Lewis “The Use of ‘Electronic Nose’ Sensor Responses to
Predict the Inhibition Activity of Alcohols on the Cytochrome p-450 Catalyzed p-Hydroxylation
of Aniline” Bioorg. & Med. Chem., 2000 8 (4), 795-805.

Gregory A. Sotzing, Jennifer N. Phend, Robert H. Grubbs, and Nathan S. Lewis “Highly
Sensitive Detection and Discrimination of Biogenic Amines Utilizing Arrays of
Polyaniline/Carbon Black Composite Vapor Dectectors” Chem. Mat., 2000, 12 (3), 593+.




Greg A. Sotzing, Shawn M. Briglin, Robert H. Grubbs, and Nathan S. Lewis “Preparation and
Properties of Vapor Detector Arrays Formed From Poly(3,4-ethylenedioxy)thiophene-
poly(styrene sulfonate)/Insulating Plymer Composites” Anal. Chem., 2000 72 (14), 3181-3190.

Brett J. Doleman and Nathan S. Lewis “Comparison of Odor Detection Thresholds and Odor
Discriminablities of a Conducting Polymer Composite Electronic Nose vs Mammalian
Olfaction” Sens. & Act., B, 2000 72 (1), 41-50.

Erik J. Severin, Robert D. Sanner, Brett J. Doleman, and Nathan S. Lewis "Differential
Detection of Enantiomeric Gaseous Analytes Using Carbon Black-Chiral Polymer Composite,
Chemically Sensitive Resistors" Anal. Chem. 1998, 70, 1440.

Brett J. Doleman, Robert D. Sanner, Erik J. Severin, Robert H, Grubbs, and Nathan S. Lewis
"Use of Compatible Polymer Blends to Fabricate Arrays of Carbon Black-Polymer Comp051te
Vapor Detectors" Anal. Chem., 1998, 70, 2560.

Brett J. Doleman, Mark C. Lonergan, Erik J. Severin, Thomas P. Vaid, and Nathan S. Lewis
"Quantitative Study of the Resolving Power of Arrays of Carbon Black-Polymer Composites in
Various Vapor-Sensing Tasks", Anal. Chem. 1998, 70, 4177.

Brett J. Doleman, Erik J. Severin and Nathan S. Lewis "Trends in Odor Intensity for Human and
Electronic Noses: Relative Roles of Odorant Vapor Pressure vs Molecularly Specific Odorant
Binding", Proc. Natl. Acad. Sci., 1998, 95, 5442.

Dr. Gordon Shepherd

Chen, W.R., Xiong, W. and Shepherd, G.M., “Analysis of relations between NMDA receptors
and GABA release at olfactory bulb reciprocal synapses.” Neuron, 2000, 25, 625-633.

Floriano, W.B., Vaidehi, N., Goddard, W.A.III, Singer, M.S. and Shepherd, G.M., “Molecular
mechanisms underlying differential odor responses of a mouse olfactory receptor.” Proc. Natl.
Acad. Sci., 2000, 97. 10712-10716.

Ma, M. and Shepherd, G.M., “Spatial relations of odor responses monitored by Ca2+ imaging
in an intact mouse olfactory epithelial preparation.” Proc. Natl. Acad. Sci., 2000 97, 12869-
12874.

Crasto, C., Marenco, L., Miller, P. and Shepherd, G., “Olfactory Receptor Database: a
metadata-driven automated population from sources of gene and protein sequences.” Nucl. Acids
Res., 2000, 30, 354-360.

Chen, W.R., Shen, G.Y., Shepherd, G.M., Hines, M.L. and Midtgaard, J., “Multiple modes of
action potential initiation and propagation in mitral cell primary dendrite.” J. Neurophysiol,.
2002, 88: 2755-2764.




Ma, M., Grosmaitre, X., Iwema, C.L., Baker, H., Greer, C.A. and Shepherd, G.M., “Olfactory
signal transduction in the mouse septal organ.” J. Neurosci., 2003, 23, 317-324.

Crasto, C., Marenco, L.N., Migliore, M., Mao, B., Nadkarni, P.M., Miller, P. and Shepherd,
G.M., “Text mining neuroscience journal articles to populate neuroscience databases.”
Neuroinformatics, 2003, 1, 215-238.

Liu, N., Xu, F.Q., Marenco, L, Miller, P. and Shepherd, G.M., “Informatics approaches to
functional MRI odor mapping of the rodent olfactory bulb: OdorMapBuilder and OdorMapDB.”
Neuroinformatics, in press.

Xu, F.Q, Liu, N., Kida, I., Rothman, D.L., Hyder, F. and Shepherd, G.M. “Odor maps of
aldehydes and esters revealed by fMRI in the glomerular layer of the mouse olfactory bulb.”
Proc. Nat. Acad. Sci. US4, 2003, 100, 11029-11034.

Chapters, Reviews
Xu, F.Q., Greer, C.A. and Shepherd, G.M., “Odor maps in the olfactory bulb.” J. Comp.
Neurol., 2000, 422, 489-495.

Crasto, C., Singer, M.S. and Shepherd, G.M., “The olfactory receptor family album.” Genome
Biology, 2001, (online).

Ma, M. and Shepherd, G.M. “Recordings from vertebrate olfactory receptor neurons: from
isolated cells to intact epithelial preparations.” In Methods in Chemosensory Research (Ed.
Simon, S.A. and Nicolelis, M.A.L.) New York: CRC Press, 2002, pp. 65-78.

Xu, F., Greer, C. and Shepherd, G.M., “Application of fMRI in olfactory studies.” In Methods
in Chemosensory Research (Ed. Simon, S.A. and Nicolelis, M.A.L.) New York: CRC Press,
2002, pp. 465-476.

Migliore, M. and Shepherd, G.M., “Emerging rules for the distributions of active dendritic
conductances.” Nature Neurosci. Revs. 2002, 3, 362-370.

Chen, W.R. and Shepherd, G.M., “Putting odor maps in sync.” Nature Neurosci. 2002, 5, 505-
506.

Shepherd, G.M. “Passive membrane properties of axons and dendrites.” In Fundamental
Neuroscience (ed. F. Bloom et al). New York: Academic Press, 2003, pp. 115-139.

Shepherd, G.M., “Information processing in complex dendrites.” In Fundamental Neuroscience
(ed. F. Bloom et al). New York: Academic Press, 2003, pp. 319-338.

Shepherd, G.M., “The single capillary and the active brain.”, Proc. Natl. Acad. Sci. USA, 2003,
100, 12535-12536.




Shepherd, G.M., Crasto, C. and Singer, M.S., “Olfactory genes and flavour perception:
implications for the evolution of human cuisines.”, In Flavour Research at the Dawn of the
Twenty-first Century. Proc. 10th Weurman Flavour Res. Symp. (ed. Le Quere, J.-L., and
Etievant, P.X.) London: Lavoiser/Intercept, 2003, pp.263-268.

Shepherd, G.M., “Implications of recent research on olfaction for the neural basis of flavor in
humans: challenges and opportunities.” In Handbook of Flavor Characterization. Sensory
Analysis, Chemistry, and Physiology (ed. Deibler, K.D. and Delwiche, J.). New York: Marcel
Dekker, 2004, pp. 93-104.

Shepherd, G.M., “Passive membrane properties of axons and dendrites. In From Molecules to
Networks.”, An Introduction to Cellular and Molecular Neuroscience (ed. Byrne, J.H. and
Roberts, J.L.). New York: Academic Press, 2004, pp. 115-139.

Shepherd, G.M., “Information processing in complex dendrites.” In From Molecules to
Networks. An Introduction to Cellular and Molecular Neuroscience (ed. Byrne, J.H. and
Roberts, J.L.). New York: Academic Press, 2004, pp. 319-338.

Shepherd, G.M. “The human sense of smell: is it more important than we think?” PLOS
Biology, 2004, in press.

Book
Shepherd, G.M. (Ed.), “The Synaptic Organization of the Brain (Fifth Edition).”, New York:
Oxford University Press, 2004.

Dr. James Bower: :
Vanier, M, and Bower, J.M., “Computational modeling of olfactory cortex.” J. Comp. Neurosci.
2004, submitted.

Protopapas, A. and Bower, J.M., “Spike coding in pyramidal cells in the piriform cortex of rat.”
J. Neurophysiol. 2001, 86: 1504-1510

Vanier, M. and Bower, J.M., “Synaptic effects of norepinephrine in piriform cortex”, 2004,
submitted.

Chee-Ruiter, C.W.J., Madany Mamloukm, A, and Bower, J.M., “Mapping odor descriptors:
Implications for the organization of human olfactory processing Chemical Senses.”, 2004,
submitted.

Fontanini , A., and Bower, J.M., “Slow and fast oscillations in olfactory cortex” J. Neurosci.,
2004, submitted.

Amir Madany Mamloukm, A., Chee-Ruiter, C., Hofmann, U.G., and Bower, J.M., “Mapping
olfactory perception space by using multidimensional scaling and self-organizing maps.”
Neurocomputing, 2003, 52-54, 591-597.



Fontanini, A., Spano, P.F., and Bower, J.M., “Ketamine/xylazine induced slow (<1.5 Hz)
oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration”, J.
Neurosci., 2003, 23, 7993-8001.

Kubota Y, Bower JM., “Transient versus asymptotic dynamics of CaM kinase II: possible roles
of phosphatase.”, J Comput Neurosci., 2003, Nov-Dec;11(3), 263-79.

Protopapas, A. and Bower, J.M., “Spike coding in pyramidal cells in the piriform cortex of rat.”
J. Neurophysiol. 2001, 86, 1504-1510.

Sobel, N., Thomason, M.E., Stappen, I, Tanner, C.M., Tetrud, J. W., Bower, J.M., Sullivan,
E.V., Gabrieli, D.E., “An impairment in sniffing contributes to the olfactory impariment in
Parkinson’s Disease.”, PNAS 2001, 98, 4154-4159. '

Protopapas AD, Bower J.M., “Physiological characterization of layer III non-pyramidal neurons
in piriform (olfactory) cortex of rat.” Brain Res., 2000, 865,1-11.

Chee-Ruiter, C.W.J., and Bower, J.M., “Biological search strategies for chemical plume
tracing.”, Proceedings of the EREDC Conference on Chemical and Biological Defense Research,
1999, pp 41-47.

Kubota, Y., and Bower, J.M., “Decoding time-varying calcium signals by postsynaptic
biochemical networks: Computer simulations of molecular kinetics.”, Neurocomputing, 1999,
26, 29-38.

Chee-Ruiter, C. and Bower, J.M., "Representing Odor Quality Space: A Perceptual Framework
for Olfactory Processing", in Computational Neuroscience: trends in research, J.M. Bower, ed.,
Plenum Press, NY 1998.

Crook, S.M., Ermentrout, G.B., and Bower, J.M., “Spike frequency adaptation affects the
synchronization properties of networks of cortical oscillators.” Neural Computation., 1998, 10,
837-854.

Crook, S., Ermentrout, G.B., and Bower, J.M., “Dendritic and synaptic effects in systems of
coupled cortical oscillators.” J. Computational Neurosci. 1998, 5, 315-329.

Protopapas, A., M. Vanier and Bower, J.M. “Simulating networks of neurons.” In: Methods in
Neuronal Modeling: From Synapses to Networks. C. Koch and I. Segev, editors. MIT Press,
Cambridge, MA, 1998.

Dr. Linda Buck:
Malnic B, Hirono J, Sato T and Buck L.B., “Combinatorial receptor codes for odors.”, Cell,
1999, 96, 713-723.



Horowitz LF, Montmayeur J, Echelard Y and Buck L.B., “A genetic approach to trace neural
circuits.”, Proc. Natl. Acad. Sci. US4, 1999, 96, 3194-3199.

Buck L.B., “The molecular architecture of odor and pheromone sensing in mammals.”, Cell,
2000, 100, 611-618.

Sam M, Vora S, Malnic B, Ma W, Novotny MV and Buck L.B., “Odorants may arouse
instinctive behaviours.” Nature, 2001, 412, 142,

Zou Z, Horowitz LF, Montmayeur J-P, Snapper S and Buck L.B., “Genetic tracing reveals a
stereotyped sensory map in the olfactory cortex.”, Nature, 2001, 414,173-179.

Buck L.B., “The search for odorant receptors.”, Cell, 2004, 116, 117-119.

Godfrey PA, Malnic B, and Buck L.B., “The mouse olfactory receptor gene family.”, Proc.
Natl. Acad. Sci. USA., 2004, 101, 2156-2161.

Malnic B, Godfrey PA, and Buck L.B., “The human olfactory receptor gene family.” Proc.
Natl. Acad. Sci. USA., 2004, 101, 2584-2589.

Dr. Noam Sobel

Mainland, J., Bremner, E., Young, N., Johnson, B., Khan, R., Bensafi, M., Sobel, N. “Olfactory
Plasticity: One nostril knows what the other learns.”, Nature, 2002, 419 802.

Anderson, K. Christoff, I. Stappen, D. Panitz, D. G. Ghahremani, G. Glover, J.D.E. Gabrieli, &
Sobel, N. “Olfaction dissociates the neural representation of intensity and valence in humans.”,

Nature Neuroscience, 2002, 6(2), 196-202.

Johnson BN, Mainland JD, Sobel N. “Rapid olfactory processing implicates subcortical control
of an olfactomotor system.”, J Neurophysiol., 2003, 90(2), 1084-94.

3) List of relevant inventions over the course of the entire project.

US Pat. No. 6,495,892 Techniques and systems for analyte detection

US Pat. No. 6,467,333 Trace level detection of analytes using artificial olfactometry

US Pat. No. 6,455,319 Use of spatiotemporal response behavior in sensor arrays to detect
analytes in fluids

US Pat. No. 6,387,329 Use of an array of polymeric sensors of varying thickness for detecting
analytes in fluids

US Pat. No. 6,350,369 Method and system for determining analyte activity

4) Technology Transfer over the course of the entire project.

Some patents licensed to startup company: Cyrano Sciences, and other patents being licensed to
Caltech.




Dr. Nathan S. Lewis:

Prediction of Physical Analyte Data Based on Interactions with a Chemical Vapor
Detection System

Introduction

The use of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property
Relationship (QSPR) techniques has allowed for the characterization of untested molecules based on
similarities to a library of experimentally characterized molecules. Essentially, the QSAR/QSPR
method involves the development of a prediction model that matches an array of experimental data.
This model can be of effectively any quantitative nature, and many methods have been used, such as
multiple linear regression, partial least squares, neural network analysis, and genetic functional
analysis.

QSAR/QSPR has been particularly useful for drug discovery, for which a fast method of pre-
screening drug candidates based on expected characteristics is necessary. Additionally, this
technique has been used to predict fundamental properties of molecules, such as thermodynamic
constants, based on their structures. However, these methods often employ semi-quantitative
"features," such as the number of double bonds or benzene ring in a structure’, or other
thermodynamic data®>. However, such data can be subjective (in the case of semi-quantitative
features) or not available for all possible molecules of interest (in the case of thermodynamic data).
For these reasons, a method that is based on simple, fast experimental methods may in some
situations be desirable.

Recent studies have shown that the responses of polymer-based chemical vapor detectors can be
modeled by thermodynamic relationships between the polymer sensor and analyte vapor.® This is
reasonable, considering that detector responses are largely determined by the partition coefficient K,
which varies for every combination of analyte and polymer.>* Therefore, it is reasonable that the
reverse should also be possible - that is, the responses of an array of different detectors to a library of
analytes should allow for the development of a predictive model that characterizes analytes based
upon their responses to a chemical detector array.

Such an attempt was made by Vaid et al., in which cytochrome-p450 activity for a series of alcohols
was predicted based upon the responses of these alcohols to a detector array.” In this case, Genetic
Functional Analysis (GFA)® was used to develop a predictive model relating cytochrome-p450
activity to sensor responses. GFA yielded 100 different models, which were ranked based on their
lack-of-fit (LOF, equation 1).

eql.  LOF=LSE/(1-((c+dp)/M))

Ultimately, the equation used to model cytochrome-p450 activity for alcohols yielded a high degree
of statistical significance as determined by its LOF and F-test values. Because the set was quite
small, cross-validation was not performed - rather, an estimated cross-validation R? value was
determined from the basis dataset.




Experimental

For our current work, we seek to explore whether other characteristic analyte properties may be
predicted from sensor responses. We have explored bulk analyte properties (water/octanol partition
coefficients (Kow)), size-related physical parameters (van der Waals area, volume, and radius of
gyration), and energetic parameters such as solubility parameter ((AH-RT)/V,;)"* and Hansen
energies, which are decomposed from solubility parameter as shown in eq 2.:

Eq 2. SP = ([(Hang)? + (Hanp)® + (Hanys)*}/ Vm)"?

Here, Hang, Hanp, and Hanyp are the Hansen electrostatic, dipole, and hydrogen bonding
components of the Hildebrandt cohesive energy, respectively; SP is the solubility parameter term,
and Vy, is the liquid molar volume. Our research did not focus on the Hansen hydrogen bonding
term because of the small number of analytes in our set that possessed non-zero values for this
property. All values were acquired from the DIPPR online database.” Values of Kow and solubility
parameters were determined experimentally, while other values were derived or calculated.

An array of 40 sensors, 2 copies each of 20 different detectors, was exposed 10 times to each of 75
different analytes, which fall roughly into five classes: alcohols, halides, aromatics, hydrocarbons,
and esters. Responses of each sensor to each analyte exposure were determined by calculating the
fractional steady-state resistance change of each sensor, AR.¢/Ry. More details regarding this sensor
array and analyte set, used for other work, are described elsewhere.®

To form a basis for prediction models, the data were divided into a training set (consisting of 18
analytes) which was used to build the models, a validation set (consisting of 19 analytes) used to
choose the best model, and a test set (consisting of 37 analytes) that was used to evaluate the model.
To ensure that the test set was interpolating rather than extrapolating based on the model, any
analytes that possessed either the highest or lowest values for any property considered were assigned
to the training set. The other analytes were randomly assigned set membership, while assuring that
each analyte class contributed roughly evenly to ensure that each class was fairly represented in each
set.

Previous work, both with cytochrome-p450 activity prediction and with prediction of the properties
here, was performed using GFA models that utilized a handful of sensors. However, this method has
the disadvantage that a great deal of useful information may be contained in the sensors rejected,
while using more sensors would slow the algorithm and almost certainly result in overtraining. For
this reason, rather than choosing sensors the data was first transformed using Fisher’s Linear
Discriminant (FLD).> FLD takes as input our 40-dimensional sensor data, and transforms the data
such that the greatest portion of the data which distinguishes the different analytes is contained in the
first few dimensions. In this way, well over 99% of the 40-dimensional information can be
contained in as few as five dimensions. This simplifies the models and reduces the risk of
overtraining, while retaining nearly all of the useful information in the data. As such, linear models
are used for our current work, and rather than using GFA to select what sensors to use (out of
40Cs=658008 possible combinations), we simply choose the most significant X FLD dimensions,
where X is allowed to vary between 3 and 11, after which the FLD components contain virtually no
information (less than 1% of that contained in the first component). The value X chosen is that




which minimizes the root mean squared error (RMSE) of the validation set. This process is repeated
for each of the properties investigated, with a single model chosen for each property, and these
models are then used to predict the properties of those analytes in the test set.

Results

As might be expected, some properties are more easily related to vapor/polymer interactions, others
less. Results of this analysis are shown in Table 1. FCs refers to the number of FLD components
used for the model, and RMSE/range refers to a ratio of the RMSE of the test set data to the range of
the data. RZ, slope, and int/range of the test set all refer to statistics derived from a correlation of
actual and predicted properties from the test set data. Int/Range refers to the fit intercept divided by
the range of the data.

Property # FCs RMSE/Range R test | Slope Int./Range
K., 5 0.0865 0.864 | 1.001 7.1x10"
van der Waals Volume 11 0.1583 0.607 | 0.7750 0.2489

van der Waals Area 10 0.1607 0.548 | 0.9180 0.1012
Radius of Gyration 10 0.1944 0.352 | 0.6941 0.3123
Solubility Parameter 9 0.1116 0.869 | 0.8897 0.1135
Hansen Dipole 11 0.1894 0.513 | 0.8037 0.6141
Hansen Electrostatic 5 0.2473 0.626 |1.011 -0.1589

Table 1. Analysis of LinearModels Developed for Prediction of Thermodynamic/Physical Parameters

A wide disparity exists in these results, with Koy and SP predicting very well, radius of gyration
predicting very poorly, and the other results in between. Van der Waals area and volume predicted
well save for an outlier which skewed the results. Note that this method is a fully blind experiment
as well, with the algorithm having never been trained on the analytes whose properties it was asked
to predict, and the test set was twice as large as the training set. Using larger datasets, or a leave-
one-out cross validation method,” would likely allow for greater success.
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Section I

Response of Electronic Noses and the Analyte Partition Coefficient
S.T. Lin, M. Blanco, W. A. Goddard III
Materials and Process Simulation Center (MSC), Caltech

1.0 Introduction

It is known that for each polymer film sensor the response (increase in resistivity
AR) is only a function of the swelling volume of the film.! In other words, the change of
conductivity is the same as long as the same volume change AV in the polymer film is
caused, regardless of the nature of the chemical molecule.

AR AV

R Sl 7 ) (1)
This experimental evidence indicates that one could predict the response of such
electronic nose if the partition coefficient of the analyte in the polymer film and the molar
volume of the analyte are known. Assuming the swelling of the polymer is ideal, the
relative volume change of the polymer film can be determined from

AV v Pyt p
= Kue vyl =K, 7 (P“"”) )

HYa Z‘—a
where P, is the partial pressure of the analyte, P;” is the vapor pressure, _I{j is the molar

volume of the analyte in the pure liquid state, and the partition coefficient K, is defined

as the ratio of analyte concentration in the vapor phase ¢)¥ versus the polymer matrix

c””™" in the limit of zero analyte partial pressure, i.e.,

polymer

— 1 a
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1.1 Perturbation Method for Calculation of Partition Coefficient

The partition of analyte molecules in the gas and polymer is determined by the
equality of the chemical potential in the two phases, i.e.,
w(T,P,c)")=pu j’”.’y'”” (T,P,c f”’y”'”) . The Widom’s particle insertion method? is one of
the commonly used techniques for determining chemical potentials. For a system
containing N, analyte molecules and N, polymer molecules, the u of analyte can be
expressed in terms of the interaction energy, W , between a ghost analyte and the
analyte-polymer mixture

#,(N,,N,,P,T)=kTIn L +—kT'ln < —-—L—exp(—ﬁlp) >y,n, (4)
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where V is the volume of the polymer-analyte mixture, g, and p, are the internal partition
function and number density of the analyte, N, and &V, are the number of analyte and




polymer molecules, W is the energy differences between the systems with N,+1 analyte
molecules and with N, molecules, i.e., W =U(N, +1,N,)-U(N,,N,), and <> indicates

ensemble averages. Assuming the analyte is ideal in the gas phase, i.e.,

G 4
u, (T,P)=-kTln pIG

5 » the partition coefficient can be calculated from the

ensemble average of ¥

InK, =Iln< ———K—exp(—élp) >N, (5)

Z N 4N,

Molecular dynamics simulation is a useful tool for determining Ky based on the
Widom’s formulation (eq. 5). Since preferred interactions, i.e. negative , is rarely
observed in high density simulations, a common practice to improve the ensemble
average is to gradually “turn on” the interactions between the ghost analyte molecule and
the polymer, i.e.,

InKy 2 In DT —— exp(=a%¥, ) >y .y, e, 6)
>Nl+Nz+e J :
where A is a perturbation parameter that varies from 0 at j=0 to 1 at /=M, and the
perturbed interaction W; is
=U(N, +&,,,N,)-U(N, +&,,N,)=(§,,, -€)AU,_, @)

with AU,_, being the interaction between the ghost (or perturbed) analyte molecule and

J+l?

the other molecules in the system, i.e.,
Ny N
- 2 (UiijW +U§OUL) (8)
(=] ja

where N is the total number of atoms in the ghost analyte and »; is the atoms of all other
atoms in the system. U;”” and U/°" are the normal van der Waals and coulomb
interactions between atoms / and ;. This is referred as the Multiple Step Thermodynamic

Perturbation (MSTP) method3 The MSTP method has also been implemented in
molecular dynamics methods.*

2.0 Implementation and Test of the Multiple Step Thermodynamic Perturbation
method

The MSTP method has been implemented in LAMMPS, a parallel molecular
dynamics simulations code developed in the Sandia National Lab.> The following
analytical equation is used to determine the values of the perturbation parameter A at any
simulation ‘step ;i

_no

&, = &, exp| - (L0 4 b

n n,-n
5~ s~
where ng and n¢ are the initial and final simulation step number, and the constant b is

)’ ®

s
determined by the initial and final values of A, i.e,b=1+ ln"—f. Equation 9 gives a
€o




linear dependence of A with n when A is close to 1 and exponential dependence when A is
close to 0. To validate the LAMMPS implementation of the MSTP method, we determine
the free energy of a Lennard-Jones liquid at reduced temperature of 0.9 and reduced
density of 0.85. Figure 1 shows the instantaneous and integrated values of the free energy
of growing (A varies from 0 to 1) and removing (A varies from 1 to 0) a particle in the
system. The results -2.22 and 2.10 are in excellent agreement with the theoretical value of
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Figure 1. The instantaneous (a) and integrated (b) values of free energy change for a
Lennard-Jones liquid at reduced temperature of 0.9 and reduced density of 0.85.




The free energy changes for both growing (A varies from 0 to 1) and reducing (A
varies from 1 to 0) a ghost particle are shown.

2.1 Application to Electronic Nose Sensors: Partition Coefficient of Analytes in
Polymer Poly-Ethylene Oxide (PEO)

We aim at predicting the response of electronic nose polymeric sensors to a wide
variety of analytes. Experimental data for various polymers, including PEO is available.!
To study the partition coefficient Ky of analyte in polymers, we performed MD
simulations on 6 analytes for which experimental data is available (dichloromethane
CH,Cl,, chloroform CHCls, dibromomethane CH,Br,, bromoform CHBr3, benzene CgHs,
and hexafluorobenzene C¢F¢) in PEO. Figure 2 shows the typical change in free energy as
a function of A for CH,Cl,. (similar curves are observed for other analytes.) The free
energy curve for the growing process starts at negative values, at small values of A, and
turns over to positive values, at large A. This indicates a competition between the
favorable interactions and unfavorable repulsive interactions at different values of A. At
small A values the interaction between the analyte and polymer is weak. The fractional
analyte can occupy the free volume of the polymer without changing the polymer
conformation. The increase of A improves the attractive interactions between the analyte
and polymer, leading to negative values of the free energy. However, at large values of A,
the increasing repulsive interactions become more significant. In other words, the
polymer has to change its conformation to create more volume for the growing analyte.
Therefore, a positive free energy is observed at large A values. ‘
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Figure 2. Instantaneous values of free energy for dichloromethane in PEQO at
different A.




The predicted partition coefficients for all six analytes are compared with
experiment in Table 1. A qualitative agreement between experimental measurements is
obtained. Discrepancies may be the result of insufficient sampling, which is known to be
crucial for polymer simulations. At the same time the measurements are subject to
experimental uncertainty. For example, ellipsometry measurements are typically higher,
by factors of 3, than the results of the quartz-crystal microbalance (QCM) quoted here.

Table 1. Comparison of the predicted and experimental values of partition
coefficient InKy for 6 analytes in PEO at 300 K.

analyte InKy(expt) InKy(calc)
CH,Cl, 1.91 4.85
CHCl; 3.34 6.44
CH,Br, 4.47 6.36
CHBr3 6.42 7.39
CeHs 2.58 5.89
CeFe 0.80 =2.01

To examine the importance of sampling, we have also performed two tests: (1)
increase the number of simulation cycles and (2) increase the number of perturbed
analyte molecules in the system. Table 3 compares the results using either one or three
cycles, i.e., repeating the change of A from 0 to 1 and back to 0 one or three times. It is
found that the increase of simulation cycles uniformly decreases the values and improves
the prediction of InKy. Therefore, the increase of cycles can reduce the bias towards poor
polymer-analyte interactions. It seems then that the polymer undergoes a non-reversible
hysteresis that requires a few cycles to equilibrate.

Table 2. The predicted partition coefficient InKy with multiple MSTP cycles.

analyte InKy(expt) | InKy(cale, 1 cycle) | InKy(cale, 3 cycles)
CH,CI, 1.91 4.85 0.96
CH,Br; 4.47 6.36 3.83
CHBr; 6.42 7.39 4.75

A second test is performed on the CH,CL,-PEO system using 1, 5, and 10 analyte
molecules. The multiple analytes behave as individual probes sampling different regimes
of the polymer. Table 3 compares the predictions of InKy using different number of
analyte probes. It is found that having multiple analytes in the system also help improve
the sampling. This approach is much more efficient than the previous multiple cycle
approach and is preferred for the future study of the analyte partition in polymer sensors.

Table 3. Comparison Effects of samplings and number of analytes in the simulation.

analyte CH,ClL,
InKy(expt) 1.91
InKy(1 CH,Cl,, 1 cycle) 4.85
InKy(1 CH,Cly, 3 cycles) 0.96
InKy(5 CH,Cl, 1 cycle) 0.80
InKy(10 CH,Cl,, 1 cycle) 1.12




Conclusions

In this work we have used the thermodynamic perturbation method to determine
the partition coefficient, the key component of determining the polymer sensor response,
for six analytes in poly(ethylene oxide). We have implemented the multiple step
thermodynamic perturbation (MSTP) algorithm in a parallel molecular dynamic
simulation program LAMMPS. In MSTP, we adjust the polymer-analyte interaction
through a perturbation parameter A whose value varies between 0 and 1. Integrating the
free energy change of the polymer-analyte composition from A=0 to 1 gives the partition
coefficient. Good agreement with experimental measurements is found when enough
samplings are considered. The MSTP method is a practical and useful tool for studying
the dependence of polymer sensor repose on different analyte and/or polymer chemical
structures, humidity, temperature, and plasticitizers.
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Hildebrand and Hansen Solubility Parameters from Molecular Dynamics with
Applications to Electronic Nose Polymer Sensors

M. Blanco, and W. A. Goddard III
Materials and Process Simulation Center, California Institute of Technology

1.0 Introduction

In 1936 Joel H. Hildebrand proposed’ a simple definition for a “solubility parameter” that would
provide a systemic description of the miscibility behavior of solvents and which subsequently has
found multiple uses in chemistry. This solubility parameter § is defined as square root of the
cohesive energy density, the heat of vaporization divided by the molar volume. Hansen® proposed
an extension of the Hildebrand parameter method to estimate the relative miscibility of polar and
hydrogen bonding systems. In Hansen’s approach the Hildebrand solubility parameter is split
into three components, polar, dispersion, and hydrogen bonding, thus the name 3D solubility
parameters. The three components are empirically fitted to define the miscibility characteristics
of the solvent. Solvents with similar Hansen solubilities are miscible in most proportions;
dissimilar values yield limited solubilities. Hildebrand and Hansen solubility parameters are
useful for selecting solvents and additives in formulations, for the blending of polymers, for the
control of kinetics and monomer sequence distributions in copolymers, and for the proper
selection of time-release formulations in the delivery of pharmaceuticals. The first principles
predictions of Hildebrand solubility parameters is of great practical value in chemical formulation
work. Unfortunately, it has been difficult to obtain sufficient experimental information to define
all of the parameters needed in developing new formulations.

Consequently, several groups have attempted to develop general computational tools to estimate
Hildebrand and Hansen solubility parameters. Choi and Kavasallis first used atomistic
simulations to estimate the solubility parameters of a class of alkyl phenol ethoxylates® and later
applied it to the estimation of 3D Hansen solubility parameters®. A related method has been
applied to the estimation of the solubility parameters for distributions of asphaltenes, resins, and
oils from crude oils and related materials.” The accuracy of these methods depends on the correct
building of the bulk structure as well as on the molecular force field parameters used in the
calculations. Numerous approaches for building amorphous polymers and liquids have been
published.*!! Some of these methods involve growing the polymer chains at a fixed
experimental density using rotational isomeric state (RIS) statistics in combination with a scaled
down atomic radius followed by potential energy minimization with periodic boundary
conditions. Other methods simulate a “polymerization” process to grow the chain in a fixed
density. A computationally expensive protocol involving chain growth at low density followed
by a pressure-induced compression with molecular dynamics has also been reported.”> Most of
these methods have been successfully used to generate amorphous structures and have correctly
predicted the solubility parameters of a few polymers.

Here we report on a multi-sample molecular dynamics method which provides a feasible tool for




estimating Hildebrand and Hansen solubility parameters without the need for experimental data.
The molecular dynamics method developed in this work is particularly useful in rapidly
generating structures of polymers with large monomer units containing rings or other complex
groups. The finite number of densification and equilibration steps regardless of polymer size
allows for a gradual packing adjustment and the uniform redistribution of stresses among the
polymer chains. This new method was validated by several studies where solubility parameter
calculations were successfully correlated with experimental measurements.

For improved accuracy, the new method employs quantum mechanical charges of single
molecules. However, semi-empirical methods for charge assignment, such as QEg,” give
somewhat comparable results for molecules containing first group elements. The most
significant approximation comes from the use of a generic force field for the estimation of
dispersion and hydrogen bonding. Approximations not withstanding, calculated Hildebrand
parameters compare well with experimental values for a series of solvents and monomer
molecules. As an application example, we illustrate the use of these values in the design of
polymer sensors for an electronic nose.

1.1 Method

The Hildebrand solubility parameter for a pure liquid substance is defined as the square root of
the cohesive energy density.

6 =[ (AH-RT)/V,, " ey

AH, is the heat of vaporization and V,, the molar volume. Typical units are

1 hildebrand = 1 cal?cm™? = 0.48888 x MPa “*= 2.4542 x10% (Kcal/mol) > A** (1a)

Hansen® proposed an extension of the Hildebrand parameter to estimate the relative miscibility of
polar and hydrogen bonding systems

82 =82 +87+5, @)

where ¢ , ¢ and J, are the dispersion, electrostatic, and hydrogen bond components of
9, respectively. For molecules whose heats of vaporization can be measured or calculated, one
can easily determine the value of 8. The Hansen solubility parameters in Equation (2) are
determined empirically based on multiple experimental solubility observations. However, for
polymers the Hansen parameters are assigned to the parameters of the solvent causing the
maximum swelling in a series of polymer swelling experiments. Thus, the two quantities
represented by Equation (1) and (2) are expected to be similar but not identical, because the
Hildebrand parameters are not always determined from heats of vaporization, particularly for
substances with high boiling points. For polymers, a variety of other experimental methods are
also used"* leading to a wide range of values for any given polymer.

We report here the Cohesive Energy Density (CED) protocol based on Molecular Dynamics
(MD) calculations under periodic boundary conditions (PBC) to determine an ensemble of




temperature and pressure equilibrated structures from which we can extract properties of the
liquid, inlcuding the Hansen and Hildebrand solubilities of solvents and polymers. CED leads to
sytematic estimates of the uncertainties in these quantities (within the model and the size of the
ensemple) that are often better than the experimental ones. . The CED method overcomes the
common equilibration problems with condensed phase molecular dynamics, i.e., how to choose
initial molecular configurations not far from equilibrium at normal densities. Significant amounts
of simulation time are usually required to equilibrate the badly packed molecules often generated
with Monte Carlo methods. In particular to obtain densely packed polymers with their
enormosous number of torsional degrees of freedom , often leads to highly nonequilbrium
dihedral populations. Thus, care must be taken to generate an ensemble of thermally accessible
conformations not far from equilibrium. These two requirements, condensed phase densities and
equilibrated molecular conformations, are satisfied through the following method"’

1. A cubic periodic unit cell containing a given number of molecules is built at 50% of the
target density. Generally four polymer chains are sufficient although for very high
molecular weights even one chain can be adequate. For the solvents, between 16 to 64
solvent molecules are adequate. We find that for building the structure it is useful to scale
Van der Waals radii by a factor of 0.30 to get initial strucures that will eventually lead to a
good ensemble.'® For convenience in this paper, we used the experimental density of the
solvents and polymers as a target value since they are available, however, systems with
unknown density, would only require one additional step of NPT dynamics to obtain the
trial density for CED.

2. The initial polymer amorphous structures are constructed using the rotational isomeric
state (RIS) table and a suitable Monte Carlo procedure' to achieve a correct distribution
of conformational states in the low density sample.

3. The charges of the isolated solvent or polymer molecules are defined using the charge
equilibration method" or are obtained from quantum mechanical calculations.

4. The force field parameters are taken from a suitable force field, such as the generic
Dreiding forcefield®, Universal force field (UFF®) etc

5. Minimization: The potential energy of the bulk system is minimized for 5000 steps or
until the atom rms force converges to 0.10 kcal/mol-A.

6. Dynamics: 750 steps of Molecular Dynamics (1 femtosecond/step) at a temperature of
700 K using canonical fixed volume dynamics (NVT) are carried out to anneal the
sample.

7. Compression: The reduced cell coordinates are shrunk such that the density is 64% of the
target density.

8. The atomic coordinates are minimized and dynamics is done on the system with the
previously described procedure holding the cell fixed (steps 5-6).

9. Atotal of five compression, minimization, and dynamics cycles are performed until the
density reaches 120 % of the target density.

10. The cell parameters are increased in five cycles of expansion, minimization and dynamics,
until the target density is reached.

11. Finally, the sample is allowed to relax in a minimization involving the cell and the atomic




coordinates.

12. Molecular dynamics are performed for 20 picoseconds. The first 10 picoseconds are used
for thermalization of the sample at the desired temperature. The last 10 picoseconds are
used for averaging of cell volume and potential energies (dispersion of van der Waals,
polar or Coulomb, and hydrogen bonding).

13. The Hansen enthalpy components are calculated by subtracting the potential energy of the
bulk system from the sum of the potential energies of the individual molecules as if
separated by an infinite distance.

14. This process is repeated ten times with different initial random conformations and
packing.

15. Hansen solubility parameters and molar volumes are computed as well as their standard
deviations. 95% confidence limit, two standard deviations from the average value, are
used to identify outliers. Typically none or at most two outliers are encountered in a ten
sample run.

Hildebrand and Hansen solubilities are calculated from the molecular dynamics average energy
components of the condensed phase simulation, single unit cell £, the energy components of the
individual molecules, E;, and the volume of the simulated sample, V', as follows

n 172
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where <> indicates a time average over the duration of the dynamics, » the number of molecules
and N, is Avogadro’s number. When E; is taken to be the total energy, the value of J is the
Hildebrand solubility parameter, or one of the components, Expond Ecoutoms, Edispersions Which
results in the Hansen solubility parameters. We stress the importance of using the thermally
equilibrated ensemble of molecular conformations to estimate the gas phase term E;, instead of n
times the minimized energy of one molecule. For simplicity the gas phase ensemble average is
approximated by the average of the isolated molecules taken from the condensed phase
simulation, averaged over the entire molecular dynamics at the desired temperature.

The builder converts an existing model into an amorphous structure by manipulating the model’s
rotatable bonds. Each unique torsion can be defined using a Monte Carlo procedure with
statistical weights given by a previously built rotational isomeric state table.'® Conformations
are rejected if two or more atoms come in contact closer than a van der Waals scale distance. The
resulting amorphous structure can then be relaxed. In polymer calculations, the number of
monomers in each chain is usually determined such that the total volume of the four chains is
approximately 5900 A®.  Alternatively, a degree of polymerization of 30 suffices to give
converged values. In such polymer samples, the minimum number of atoms is around 1000. The
overall procedure is illustrated in Figure 1.



2.0 Results

Over sixty common solvents, reactants, and monomers of significantly different structure,
polarity, and chemical composition were chosen from various experimental compilations of
Hildebrand solubility values available in the literature. Quantum Mechanical (Hartree Fock 6-
31G** full geometry optimization, Mulliken and electrostatic potential (ESP) with a constraint to
reproduce the quantum dipole moment from the wavefunction) charges were assigned to the
molecules for ten separate independent molecular dynamics simulations. Table I (attached after
references) contains the averaged results of 10 CED simulations for the two charge assignment
methods for each solvent molecule. For comparison the various experimental values found in
the literature and their deviations are included. Table II gives an example of the output of the
CED procedure.

Figures 2 and 3 show the correlations between experimental and predicted values. Based on this
data the accuracy of the CED method is 0.8 hildebrands. The experimental RMS value calculated
from the various literature sources is 0.43 hildebrands. Although most solvents fall within the
experimental error a few predictions are clearly outside the range of measured values. Exclusion
of the six worst cases (formic-acid, acetic acid, dichlorodifluoromethane, acrylic acid, methyl
formamide, and malononitrile) from the predictions reduces the RMS to 0.6 hildebrands.

The accuracy of the molecular dynamics results directly depends on the accuracy of the intra and
inter-molecular potential atomic parameters (force field) and to some extent on the modeling
protocol. This problem is in part overcome with force fields that accurately reproduce the
experimentally measured bond distance, angles, as well as the respective force constants of small
molecules. Less effort has gone into optimizing the van der Waals parameters in such force
fields. Precision on the other hand is strongly dependent on the molecular dynamics procedure
employed to prepare the samples. No significant differences in precision were found for the
worst six cases (0.60, 0.62, 0.40, 0.37, 0.57, 0.42 hildebrands respectively) when compared to the
average precision across all solvents (0.44 hildebrands).

We speculate that the assigned van der Waals force field parameters (our generic force field was
not particularly fitted to halogens and nitrogen containing compounds) play a role in the accuracy
of our predictions. We made no attempt to adjust the force field parameters here. However we
point to the possibility of using the CED method together with experimental heats of vaporization
and densities for the estimation of van der Waals Lennard-Jones parameters and/or the hydrogen
bond terms for the various chemical atom types represented by these compounds. For example,
systematic underestimation of the solubility parameter is observed through the calculated versus
experimental ratio Sesp/dexp for alcohols and amides ( 2-ethyl-lhexanol 0.89, 2-ethyl-1-butanol
0.92, 1-pentanol 0.95, n-butanol 0.92, n-propanol 0.91, furfuryl alcohol 0.96, ethanol 0.87, 1,3-
butanediol 0.91, methanol 0.89, N,N-dimethylacrylamide 0.91, dimethylacetamide 0.94,
dimethylformamide 0.87, methylformamide 0.84). This suggests that the Dreiding parameters for
the H-bond term (Do=2.5 Kcal/mol, Ro=3.2 A) could be modified to increase the accuracy of the
predictions. Both parameters may be involved since the density of these two groups of
compounds is also underestimated. Finally, there seems to be a systematic overestimation of the
solubility parameter for the organic acids. The dcsp/dcxp ratio is consistently high (propionic acid
1.18, acetic acid 1.30, methacrylic acid 1.04, formic acid 1.30, acrylic acid 1.21). The effect is




opposite the hydrogen bond effect previously mentioned. We assume that the molecules in the
gas phase are non-interacting. Many low molecular weight acids exist in a dimerized form in the
gas phase. If we assume that half of the intermolecular hydrogen bonds are preserved in the gas
phase, the solubility parameter will be decreased by about 3 hildebrands, bringing theory and
experiment quite close in agreement. We now discuss the effect of charge assignment methods.

Although Mulliken charges are quite useful in determining the structure of molecules in the gas
phase these appear to be less accurate than Electrostatic Potential charges (ESP) for the
determination of condensed phase properties. We advocate the use of ESP charges for the
estimation of solubility parameters and the use of Mulliken charges for conformational studies in
the gas phase. It appears that the far field representation of the ESP charges captures more
accurately the physical interactions between molecules in the condensed phase.

We compare our Molecular Dynamics results to other predictive methods available in commercial
software packages such as Synthia-Fedors and Synthia-van-Krevelen.”> These methods can be
considered state-of-the-art group additivity methods, relying on topological descriptors and other
single molecule quantities to make predictions based on correlations and parameter extractions
from large databases of solubility parameters. Although intended for predictions on polymers
these parametric methods require only the isolated monomer structure to make a prediction. The
methods are fast and simple to use. In contrast, the MD method presented here requires a full
condensed phase simulation of the compound of interest. Nonetheless the CED Molecular
Dynamics method is non-parametric. Beyond the predetermined force field, in our case a generic
force field published in the mid 80’s, CED used no adjustable parameters and no experimental
input information. Moreover, in principle the CED molecular dynamics method can make
predictions as a function of pressure and temperature and it is general enough to deal with
complex mixtures, including solvent/polymer mixtures. The average root mean square (RMS)
difference for the CED results and for two group additivity predictive methods, Synthia-Fedors
and Synthia-van-Krevelen® with respect to the experimental values is shown Table III

Solubility parameters predicted employing the current molecular dynamics simulation
methodology can also be compared to those calculated employing molecular dynamics
simulations by Rigby et al.**®. Employing the PCFF forcefield and Amorphous Cell/Discover
programs,”® Rigby et al. predict solubility parameters for 13 of the molecules in Table I which
have an average absolute difference with experiment of 0.92 (cal/em*)"? which is similar to that
predicted by the current methodology (absolute difference of 1.1 for the 13 molecule set). As
with the current simulations, the largest differences in the set are seen for two acid molecules.
The current authors have calculated the solubility parameters for hexane, acetone, and n-propanol
employing molecular dynamics simulations with the COMPASS forcefield and Amorphous
Cell/Discover programs™ Average absolute differences with experiment for this set of three was
found to be 0.25 with COMPASS methodology which is slightly smaller than the 0.55 difference
observed for the current CED methodology. The COMPASS forcefield has been extensively
optimized to reproduce the heats of vaporization of a large number of organic liquids. For
example, in a related COMPASS forcefield study,® Sun has calculated heats of vaporization for
100 compounds to within an average percent error of experiment of -0.2% with maximum errors
of 14.6% and 14.5%. This is to be contrast with our current approach where generic force field
was employed without any further optimization. Eichinger and coworkers*®® have employed the
COMPASS forcefield to compute solubility parameters for Ultem oligomers, related molecules,
and solvent molecules including toluene. Not surprisingly the calculated solubility parameter for




toluene is 0.07 (cal/cm )” 2 closer to the average experimental value (8.94 (cal/cm®)'?) than the

prev1ous PCFF forcefield value.*®® The calculated toluene solubility parameter value of 9.0
(cal/em®)"* compares well to the current ESP calculated solubilty parameter of 9.23 (cal/cm®)"%,

2.1 Application to the Electronic Nose

An electronic nose has been built at Caltech®”* employing an array of polymer sensors. Sensors
are built with conducting leads connected through thin film polymers loaded with carbon black.
Odorant detection relies on a change in electric resistivity, AR/R, of the polymer film as function
of the amount of swelling caused by the odorant compound. The amount of swelling depends
upon the chemical composition of the polymer and the odorant molecule. An array of twenty
carbon black loaded polymers give rise to a specific change in resistivity patterns upon exposure
to a glven molecular species. The pattern is unique and unambiguously identifies the
compound.?*#*

The experimentally determined changes in relative resistivity, AR/R, of seven polymer sensors
upon exposure to twenty-four solvent vapors was correlated with the calculated Hansen solubility
components. The permeability of a given odorant in a polymer is given by*’

P= Aexp( AH, i) (4)

where A is the pre-exponential factor related to entropy, AH; is the heat of sorption of the solute
and Ep is the activation energy for diffusion of the molecule in the polymer. We assume that the
relative change in resistivity is directly proportional to the odorant’s permeability. The following
expression was used to correlate AR/R with the Hansen components of the cohesive energy of the
polymer and solvent as well as the molar volume of the solvent.

AR/ R = R, exp(-1V.)exply B, (87 =811 (5)

yVs is the activation energy of diffusion of the solute in the polymer, proportional to the molar
volume of the odorant, V;. The exponential factor y is a best-fit parameter. We base this relation
on the experimental observation that the diffusion coefficients of various molecules is linearly
related to the molar volume of the solute in the case where the actual temperature is greater than
the glass transition (Tg) of the polymer.>! This approximation is used in our analysis regardless of
Te. 6 (i=1,2,3) are the cohesive energy density component of the solvent s, where i=1, 2 and 3
refer to the electrostatic, dispersion and hydrogen bond components respectively. Similarly, 6,7 is
the i-th cohesive energy component of the polymer sensor p. The exponential coefficients S, are
treated as best fit parameters as well as is the pre-exponential term Ry. It should be noted that we
preserve the sign of the energy components in equation (5), usually lost in the definition of
Hansen and Hildebrand parameters. This is important because such interactions can be attractive
or repulsive, depending on the polymer/odorant mixture in question. For simplicity we employed
the charge equilibration, Qeq,”® method to assign atomic charges to polymers and solvent
molecules.




The results of fitting equation (5) to experimental changes in resistivity’* are shown in Figure 4
for seven electronic nose polymer sensors and twenty-four solvents.”” Pearson’s correlations
between the experimentally determined change in resistivity and the Hansen solubilities are
shown for polymer sensors (poly(methylmethacrylate) (PMMA), poly(4-hydroxystyrene)
(P4HS), polyethylencoxide (PEO), polyethylene (PE), poly(ethylenevinyl acetate) (PEVA),
polysulfone, and caprolactone) in Table IV. The calculated Hansen solubilities for the seven
polymers and twenty-four solvents are summarized in Table V.

The correlation was particularly good for polysulfone, poly(4-hydroxystyrene) and PEVA
(polyethylene-co-vinyl acetate) and especially poor for polymethylmethacrylate based on both
correlation slope and the Pearson R values for the linear fit. Polysulfone appears to discriminate
between solvents of different sizes since the free volume fraction is small and the free volume
distribution may be narrow, resulting in a "molecular sieve" effect. Additionally, the
experimental relative change in resistivity in polysulfone ranges from zero to 1.0, which makes it
a particularly good high-resolution sensor.

The polyethylene-co-vinyl acetate detector also correlates reasonably well with the theoretical
relative change in resistivity. However, the relative change in resistivity range is smaller
compared to polysulfone indicating that it is less discriminating towards ester and alcohol
solvents. A possible explanation that accounts for this observation is that PEVA contains polar
ester functional groups due to the vinyl content (18 %), as well as non-polar components due to
the polyethylene content (82 %). PEVA has a glass transition below room temperature and as a
result contains a large free volume fraction. This decreases the sensitivity towards molecules of
different sizes compared to high T, polymers such as polysulfone. The third particularly good
detector in terms of signal correlation with theoretical prediction is poly(4-hydroxy styrene).
This detector is particularly sensitive to molecules functionalized with highly polar groups such
as alcohol due to the hydroxyl functional group. However, the sensitivity of this sensor to
moderately polar or non-polar solvents such as esters is particularly low.

3.0 Conclusions

The CED Molecular Dynamics method presented here provides a reproducible method to predict
the Hildebrand solubility parameters for polymers and solvents. Its precision (0.44 hildebrands)
is comparable to the experimental error (0.43). We investigated the use of compression and
expansion cycles, simulated annealing, charge assignment methods, and statistical sample
averaging. Itis important to start from a low-density sample to achieve equilibrated
conformational statistics within a reasonable computational time. Ten samples, with roughly
1,000 atoms each, seem adequate to estimate these properties.

The results compare well with experimental values, although accuracy (0.88 hildebrands) is
somewhat lower than precision (0.44 hildebrands), mostly a deficiency of the force field. No
attempt was made to refine the force field parameters to improve the accuracy of the method,
although such a possibility is clearly present. The present method should be added to the
existing methods (ab initio EOS, x-ray structure fittings) currently used to estimate Lennard-
Jones parameters or hydrogen bond parameters.




The CED Molecular Dynamics calculated Hildebrand and Hansen parameters give systematic
measures of the solvency of a given chemical compound. Such values are of practical use for the
design of new materials, formulations, and processes. As parallel molecular dynamics
algorithms are implemented simulation times will be reduced and the prediction of solubility
parameters will become even more practical. For example, the estimation of Hildebrand and
Hansen solubility parameters takes approximately two hours in a dual processor Linux computer.
Using a highly parallel particle-mesh algorithm®**® to integrate the dynamics, the CPU times
can be reduced to ten minutes using twenty four processors. In such a computational
environment, it becomes practical to automate the population of databases of solvents and

complex mixtures with Hildebrand and Hansen solubility parameters for product formulation
work.
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Table II. Example of output from the CED molecular dynamics method. Here the simulation
procedure used ten samples to estimate the condensed phase properties of 2-ethylhexylacrylate.

Sample Cohesive Solubility Density End-End Radius
Hansen Solubilities
Energy Parameter distance Gyration Elec
Dispersion H-Bond
(cal/cc) (cal/cc) Y2 (g/cc) (A) (D)
(cal/cc)*’*
1 -73.42 8.57 0.80 7.10 3.19 3.52 7.56
0.00
2 -81.04 9.00 0.88 6.78 3.19 4.05 8.31
0.00
3 -67.84 8.24 0.83 7.17 3.17 3.20 7.72
0.00
4 -77.06 8.78 0.83 7.63 3.26 3.60 7.84
0.00
5 -70.63 8.40 0.84 7.33 3.17 3.60 7.86
0.00
6 -70.46 8.39 0.82 6.67 3.22 3.18 7.72
0.00
7 -77.91 8.83 0.87 7.34 3.13 3.42 8.21
0.00
8 -81.90 9.05 0.87 7.17 3.19 4.00 8.15
0.00 }
9 -70.78 8.41 0.85 6.82 3.18 3.81 7.94
0.00
10 -65.89 8.12 0.82 6.74 3.19 3.96 7.87
0.00
Average Standard Deviation
Density 0.84 +- 0.03 (g/cc)
Cohesive Energy Density -73.69 +- 5.52 (cal/cc)
Solubility Parameter 8.58 +- 0.32 (cal/cc)?’?
17.55 +- 0.66 (Mpa) /2
Electrostatic Hansen SP 3.63 +- 0.32 (cal/cc) *?
Dispersion Hansen SP 7.92 +- 0.24 (cal/cc) /2
Table II (Example Output of CED Simulation)Continued:
Hydrogen Bond Hansen SP 0.00 +- 0.00 (cal/cc) /2
Non-Bond EEX ~-76.05 +- 5.49 (cal/cc)

Unit Cell Volume

End-to-End Distance 7.07 +-

5820.43 +-174.32 A3

0.3134 (A7)




Radius of Gyration 3.19 +- 0.0334 (An)

Table III. Average error of Synthia predictive methods compared with
CED predictions of Hildebrand Solubilities.

Method RMS @
CED-ESP 0.806
Synthia-Fedor 1.388

Synthia-van-Krevelen  1.202
® Root mean square deviation (hildebrands).




Table IV. Pearson’s correlation coefficients and slopes of predicted versus experimental
changes in resistivity, AR/R, for each of seven polymer vapor solvent detectors.

Polymer Sensor Slope _ Pearson’s R
Polycaprolactone 0.858 0.925
Polysulfone 0.932 0.962
PMMA 0.678 0.827
PEVA 0.888 0.936
Polyethylene 0.870 0.933
Polyethyleneoxide = 0.746 0.874
Poly(4-hydroxystyrene) 1.018 0.991




Table V. Estimated molar heats of vaporization and Hansen solubilities

A qu) . 0 1 0 2 o 3

) Odorants i Kcal/mol . [Electrostatic Dispersion H-bonding
.2-pentanol -151.42 -53.32 -76.48 -21.62
1 3-pentanol - -142,40 | - -47.89 -76.87 -17.64
‘amylacetate -127.31 -40.19 -87.13 0.00
ibutylacetate -132.03 -41.75 -90.28 0.00
decylacetate -104.70 -21.02 -83.68 0.00
:ethanol -257.64. ' -146.00 -51.35 -60.29
ethylacetate . -159.31 -68.99 -90.33 0.00
hexylacetate . -122.55 -34.83 -87.72 0.00
.iso-amylalcohol -159.46 -59.82 -73.87 -25.77
{isoamylacetate -125.90 -38.67 . -87.24 0.00
‘isoamylbenzoate : -119.56 -23.04 -96.52 0.00
-isoamylbutyrate -111.52 -25.34 -86.17 0.00
risoamylcaproate -104.57 -20.83 -83.74 0.00
.isoamylpropionate:  -113.17 :  -30.36 -82.81 0.00
lisobutylacetate . -130.92 | -4505 -85.87 0.00
\isopropylacetfate | -14346 | -57.20 -86.26 0.00
:n-amylalcohol . -169.42 -59.53 -75.46 -24.44 |
:n-heptanol -130.23 -37.63 -76.59 -16.01
:n-hexanol -141.38 | -46.42 -77.97 -16.99
n-propanol - -193.82 ¢ -94.68 -60.77 -38.37
ioctanol -127.59 | -33.80 -79.91 -13.88
.octylacetate Po-112.37 1 -26.42 -85.95 0.00
.propylacetate -142.96 | -54.90 -88.06 0.00
‘n-butanol -1562.72 | -64.31 -61.58 -26.82
. Polymer Sensor |

,PMMA -90.51 | -31.19 -59.32 0.00
'P4HS -106.66 -28.66 -64.48 -13,51
[PEO . -168.10 -68.36 -95.90 -3.84
PE ;- -85645 | -1.00 -84.46 0.00
‘PEVA -85.02 -10.82 -74.20 0.00
| Polysulfone -138.74 -29.76 -108.98 0.00
:Caprolactone -12266 . -3531 = -87.34 | 0.00




Figure 1. A polymer or solvent sample is put through a series of compression and expansion
steps until the proper density and packing is obtained. On the left the initial density is 0.4 p,,
40% of the target density. After compression, second step, the sample is over compressed to 1.2
Po - Finally the sample is allowed to relax. Through NPT molecular dynamics a final prediction
of the density and cohesive energy of the sample is obtained. The process is repeated for a few
samples to gather statistics.
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Figure 2. CED versus experimental Hildebrand solubility parameters for all molecules in Table
I. Error bars indicate one experimental and simulation standard deviation. Charge assignment
method is HF 6-31G** Mulliken population charges.
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Figure 3. CED versus experimental Hildebrand solubility parameters with quantum mechanical

electrostatic potential (ESP) HF 6-31G** assigned charges. Error bars indicate one experimental
and simulation standard deviation.
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Figure 4. Comparison between theory, equation (5), and experimental changes in resistivity of
seven polymer sensors exposed to twenty-four solvents.



Dr. Gordon Shepherd

Our subproject carried out several studies during the five years of the grant plus the final one
year no-cost extension (overall 1998-2004). The overall aim of these studies was to provide
computational analysis of key aspects of experimental data generated by our laboratory and by
our collaborators that would give insight into the molecular and cellular basis of information
processing of olfactory sensory input in the olfactory pathway.

Study 1. Interactions between odor molecules and receptor binding pocket. A major goal
of our subproject was to gain insight into the nature of the information that is carried by the odor
molecules and transferred into the neural domain by interactions with olfactory receptor proteins.
The first study was carried out by Michael Singer, a graduate student in our laboratory. For his
thesis work, supported in part by the MURI, tested by molecular modeling the ligand specificity
of a specific receptor, 17, that had been shown in expression experiments to interact preferably
with octanal, a straight-chain 8 carbon aldehyde. Using commercial software, he constructed
model of 17 and carried out docking experiments, which showed that the model also preferred
octanal over neighboring aldehydes. This analysis pointed to specific interactions between the
OH group of the aldehyde and the positive nitrogen group on a specific lysine residue in a
binding pocket, as well as weak interactions with other residues forming the walls of the pocket.
This was among the first evidence for the specificity of the binding pocket in an expressed
olfactory receptor. It was reported in Chemical Senses in 2000 (Singer, 2000).

In a parallel study we collaborated with the Goddard group in the MURI program to carry
out a much more extensive study of receptor binding properties in a set of receptors that had
been characterized physiologically by the Buck laboratory and shown to be correlated with
specific receptors as identified by single cell PCR. This project is described in more detail in the
Goddard progress report. This three way collaboration resulted in a paper (Floriano et al, 2000)
which also showed that the model gave rank ordering of ligand preference similar to that seen in
the experiments. Together, these studies supported by MURI have provided some of the first
and most convincing evidence for a binding pocket in the 7TM olfactory receptors, and for the
differential interactions between determinants of the odor molecules and specific residues within
the binding pocket. They thus give direct insight into the elementary sensory units that are the
basis for subsequent processing by circuits in the olfactory pathway.

In subsequent work Dr. Chiquito Crasto, with the assistance of Peter Bail, has continued
Singer's work in collaborating with the Goddard and Buck laboratories to extend their
computational study to further olfactory receptors and their interactions with odor ligands. Under
the supervision of Drs. Shepherd, Miller and Nadkarni, he is also responsible for the olfactory
receptor database (ORDB) and the odor ligand database (ODORDB), funded by a Human Brain
Project grant, which support the analysis of odor ligand-olfactory receptor interactions, from
which our collaborative study has benefitted.

It is widely assumed that genes map directly into behavior, and therefore that the lower
numbers of olfactory genes in humans compared with rodents reflect a diminished importance of
smell in humans. We have argued that this direct mapping cannot be assumed, and that other
factors must be taken into account, which suggest that human smell is more important than
generally realized (Shepherd, 2004).

Study 2. Gene chip analysis of expressed olfactory receptors. Although genomic DNA
indicated the numbers of olfactory receptor genes in human and mouse (350 and 1200
respectively) it left unknown how many of these are actually expressed in the olfactory




epithelium. To answer this we have undertaken a collaborative study with the laboratory of
Stuart Firestein in Columbia and Minghong Ma in my laboratory, who now is at U Penn,
building the first Affymetrix gene chip for this purpose. Thus far the chips have been able to
identify over 800 expressed genes (Zhang et al, in preparation). Further studies will use the
chips for analysing expression in different organs and at different stages of development. A new
database for receiving this chip data is in development, under the supervision of Drs. Shepherd,
Miller and Nadkarni.

Study 3. Differential odor responses in populations of olfactory receptor cells.

Most of our knowledge of the differential responses of olfactory receptor cells to different odors
has been obtained from recordings from single cells. Because of the enormous number of
different receptors, a high throughput recording method is needed. To answer this need we
developed an isolated preparation of a segment ("swatch") of the epithelium, in which we could
use Ca sensitive dyes to image the odor responses of up to several hundred cells at one time.
This enabled us to characterize for the first time the simultaneous responses of many cells to the
same odor, and to a battery of different odors (Ma and Shepherd, 2000). This same approach has
been used to analyse for the first time the response selectivity of cells in the septal organ of the
rat (Ma et al, 2003). To extend these studies we have collaborated with the laboratory of Peter
Mombaerts to use gene targeted mice with cells expressing the MOR23 olfactory receptor gene
tagged with GFP. A report is in preparation (Grosmaitre et al, 2003).

Study 4. Differential odor responses in populations of olfactory glomeruli. The
differential odor responses of receptor cells are projected onto the glomeruli of the olfactory
bulb, giving rise to spatial patterns of activity reflecting the differential responses of the
individual glomeruli (also called odor maps or odor images). Building on our study of aldehyde
responses of the 17 receptor (see above) we have carried out a study of the odor images elicited
by the different aldehydes. For this we have used high resolution fMRI, which we introduced
several years ago for olfactory studies in collaboration with the imaging group at Yale under
Robert Shulman and Douglas Rothman. For this study we drew on our Human Brain Project
expertise to develope methods for rendering the 3D image as flat maps (Liu et al, 2004). The
results (Xu et al, 2003) show that the images are overlapping but different for the different
carbon chain lengths of the aldehydes. These fMRI maps have the advantage of being obtained
in the same animal and of showing the entire global extent, which is not possible to obtain with
other methods (Xu et al, 2000). We have pointed out the advantages of the olfactory bulb in
analysing the relation between activity and metabolic requirements underlying fMRI imaging in
the brain (Shepherd, 2003).

Study 5. Complex processing by neuronal dendrites in the olfactory bulb. The
information contained in the odor maps is processed by the microcircuits of the olfactory bulb.
These microcircuits are largely formed by the dendrites of mitral/tufted cells and their
interactions with two types of interneuron: periglomerular (PG) cells and granule cells.
Previously we have shown that the site of action potential initiation shifts dynamically dependent
on levels of synaptic excitation and inhibition. To test this model further we have carried out a
computational study, which has shown a novel "ping-pong" effect of the action potential
initiation site shifting from distal to proximal dendrite under different conditions of synaptic
excitation in the glomerulus and synaptic inhibition from the granule cells (Chen et al, 2002).
Further analysis of the properties of the distal dendrites in the glomerular tuft have been carried
out using Ca imaging combined with two-photon microscopy (Zhou et al, in preparation).




Mitral cells are also interconnected in their distal dendrites in the glomerulus by gap
junctions which mediate electrical interactions between them. It has been postulated that this
provides a mechanism for synchronization of mitral cells. Experimental evidence for
synchronization has been obtained in recordings from mitral and periglomerular cells (Zhou et al,
in preparation; Jia et al, in preparation). To test the gap junction hypothesis we have carried out
computational studies, which have shown the operating range over which the gap junctions are
likely to bring about synchronization. The study has also provided clear evidence of the critical
role of the long primary dendrite in the integrative actions of the mitral cell, which need to be
taken into account in the construction of neural networks of these and similar cortical cells. A
report is in preparation (Migliore and Shepherd, in preparation).

Study 6. Neuronal functional phenotype depends on dendritic properties. The
mitral/tufted cells, like other neuron types, have a distinctive morphology and mode of action
potential firing. In order to gain insight into the relation between the morphological types and
firing patterns we carried out a study to classify them. The tentative result was a flow diagram
showing how different types of dendritic morphology and different types of firing patterns could
be related to the different distributions of voltage-gagted ion channels in the dendrites by a
hierarchical scheme (Migliore and Shepherd, 2003). Further studies will be needed to test this
hypothesis.



Dr, James Bower:

Our subproject carried out several studies during the five years of the grant plus the final one
year no-cost extension (overall 1998-2004). In general our efforts were focused on two main
areas: physiological and modeling studies of the relationships between the periodic oscillatory
behavior of the olfactory system and an effort to understand how humans classify and organize
olfactory information.

A. Is there a natural order in olfactory stimuli?

Odor quality is thought to depend primarily on the chemical structure of the olfactory stimulus.
In form, this hypothesis can be traced back to Lucretius, who in 50 BCE suggested that agreeable
odors were produced when the olfactory system encountered "smooth" particles, while
disagreeable, harsh odors were generated by "hooked" particles [1]. This idea was made more
explicit in the early 20™ century when Henning [2] linked odor classes to specific molecular
features (as referenced in Schiffman [3]). Current thinking suggests that the olfactory system
functions as a “chemical classifier”, where olfactory perception is organized around the detection
of different structural classes of molecules by different classes of receptor proteins (e.g., [4-7]).
In support of this idea, the organizational principles governing molecules in organic chemistry
have become, in practice, the favored hypothetical organizational principles for olfactory
perception. Specifically, structural homology is implicitly used to explore odor “topography” in
the olfactory system with most studies based on sets of chemical stimuli representing small
changes in chemical structure between molecules with similar chemical properties (e.g., carbon
chain length [8-10]). Thus homologous series of alcohols [8, 11-15], aldehydes [8, 11, 16, 17],
and/or other simple organic molecules [18-20] are regularly used to examine the response
properties of olfactory receptor molecules [20], olfactory receptor neurons [12], bulbar [11, 16,
19] and cortical [20] neuronal responses, as well as psychophysical responses to these stimuli [8,
13-15].

While probing the olfactory system with homologous series of odorants is standard across a wide
range of studies, the results obtained usually indicate some more complex pattern of
organization. Thus, for example, studies of single olfactory receptor binding properties indicate
that while individual receptors might bind to two to three consecutive molecules in a series,
molecules taken from other series also often elicit responses [20]. More generally,
psychophysical analysis of odor perception demonstrates that similarity in molecular structure
does not also predict similarity in odor quality, an observation consistently observed for almost
half a century [21]. In fact, it is still not possible to predict the odor quality elicited by a stimulus
based on molecular structure alone [3Jor even to know for certain that a particular molecule will
elicit an odor at all. Finally, the strongest argument that the organization of odor perception is not
based simply on structural homology is that a change in the concentration of the same
monomolecular stimulus can produce dramatic changes in its elicited odor [22]. Thus, it is clear
that the olfactory system is doing something more complex than merely detecting different
molecules based on their chemical structure.

In this paper we report the results of an effort that initially disregarded the chemical structure of
odorants, and instead sought evidence of order in the relationships between odor perceptions, and
subsequently whether a similar order might exist in the organization of olfactory stimuli. First,




using two large published data sets of odor descriptors elicited by different monomolecular
stimuli [23, 24], we have used a cross-entropy analysis of the co-occurrence of pairs of
descriptors associated with different molecules, to generate directed graphs representing the
relationships between these descriptors. We have found that both datasets, generated by
different olfactory specialists, are quite similar. Second, we have further analyzed these graphs
with respect to molecules known to elicit different odor perceptions with varied concentration.
This analysis has revealed that all tested molecules of this class fall into one of three transitions
in the graph. Finally, when the molecular structure of the molecules whose descriptors also map
to these graph locations are analyzed, we discovered that the entire graph can be divided into
regions whose descriptors represent molecules containing sulfur, nitrogen or carbon. We
interpret this result to imply that olfactory perception reflects some understanding of different
biogenetic pathways in the natural world, rather than the kind of organization suggested by
structural chemical homology. This hypothesis has important implications for the interpretation
of studies of the structure and specificities of olfactory receptors as well as investigations of
structure-function relationships in olfactory systems as a whole.
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B.  Relations between sniffing and oscillations in olfactory cortex

While it has been known for many years that the nervous system generates oscillatory behavior
in a wide range of frequencies (Adrian 1942, Freeman 1960, Bressler 1990, Steriade 1997), the
functional significance of this dynamical behavior has recently become a growing focus for
many physiologists (Engels and Singer 2001), modelers, and theorists. The oscillatory behavior
of cerebral cortex and its associated structures in particular is now regarded by many as being
directly linked to function (Engels, 2001). Current speculations on these functions range from
the coding of sensory information (Singer and Gray 1995), to a substrate for attention (Fries
1997, Tiitinen 1993, Tallon-Baudry 1999), awareness and conciousness (Engels and Singer
2001, Sauve 1999, Crich and Koch 1990). '

Central in many interpretations of the functional significance of cerebral cortical oscillatory
behavior is the question of the origins of this behavior, and, in particular, its relationship to
afferent input. Modeling efforts, including our own (Wilson and Bower 1992), together with
experimental works (Sanchez-Vives and McCormick 1999), have suggested that the tendency of
cortical networks to oscillate is an intrinsic property of both its networks and neurons (Wilson
and Bower 1992, Hasselmo 2001). Others have observed that oscillatory patterns could be
“driven” by deeper brain structures like the thalamus (Steriade, Destexhe) and that, under
specific conditions, they could be related to sensory inputs (Ferster). Additional confusion in the
literature results from the fact that the cerebral cortex generates many different frequencies of
behavior, and it is often unclear how the oscillations described by one laboratory, relate to the
oscillations described by another.



In several studies funded by the MURI and now complete, we have focused on oscillations in
the olfactory system occurring at frequencies less than 1.5 Hz. These low frequency oscillations
have been recorded here under conditions of ketamine/xylazine anesthesia and are comparable to
similar slow oscillations observed in neocortical areas by Steriade and colleagues using the same
anesthetic protocol (Steriade 1993 a, b). Based on similarities between these oscillations and
those seen during slow wave sleep (SWS), Steriade has proposed that the presence of these slow
oscillations reflects a behavioral condition in which the brain is mostly closed to the external
environment and running on its own (Steriade 2000, Timofeev 1996). This assertion is consistent
with electrophysiological results demonstrating slow wave oscillations in neocortical slices
(Sanchez-Vives 2000) and slabs (Timofeev 2000) which, of course, are devoid of afferent
sensory input. Recently similar oscillations have also been shown to occur in thalamic slices
lacking afferent input (Hughes 2002),

We have used this ketamine/xylazine preparation to investigate the relationship between slow
oscillations in primary olfactory (piriform) cortex and the presence of oscillatory activity in its
afferent inputs. Unlike sensory neocortex in fact the overall temporal pattern of afferent inputs to
the olfactory cortex is rthythmical and controlled by the sniffing (bressler, others). Using
intracellular and extracellular recording techniques, we demonstrate here for the first time the
presence of ketamine/xylazine-induced slow oscillations in membrane potential and local field
potentials recorded in vivo from piriform cortex. Further we show that the occurrence of these
neuronal activity patterns is directly correlated with the natural breathing cycle of the rat, and
therefore is likely to be directly related to periodic patterns of afferent input linked to respiration.
In supporting to this interpretation we demonstrate a considerable reduction in the amplitude and
regularity of oscillations when air bypasses the olfactory system in tracheotomized preparations.
Pulsing air into the nostrils in this preparation restores the oscillations, and can directly entrain
their frequency. We therefore conclude that there is a direct relationship between slow
oscillations in the olfactory cortex and in its sensory input. The conclusion that respiration is
reflected in the temporal behavior of piriform cortex is also consistent with studies conducted as
part of this larger research project in the olfactory bulb of rats (Sobel 1993) and with recent
imaging results in humans (Sobel 1998).

We have previously suggested, based on computational grounds, that the fundamental neuronal
architecture of cerebral cortex may have first evolved in the context of the olfactory system and
then been adapted to the use of other sensory systems through the evolution of neocortex
(Bower, 1995). We have speculated that the presumed general usefulness of the type of
associative learning necessary for object recognition in the olfactory system drove this
subsequent development of neocortex. As a consequence, however, we suggest that neocortex
was forced to accept dynamical patterns of behavior more clearly related to olfaction than
somatosensation, vision, audition, etc. We believe similarities in the neo and olfactory cortical
mechanisms for the higher frequency theta (7-12 Hz) and gamma (30-50 Hz) oscillations
revealed by our realistic modeling efforts (Wilson and Bower, 1991; 1992), support this point of
view. With respect to the slow frequency behavior studied here, because the olfactory system is
fundamentally linked to the metabolic function of respiration, air continues to move across the
olfactory epithelium during the sleep state providing an ongoing periodic input. In neocortex, in
contrast, sleep is associated with sensory deafferentation through the action of the thalamus
whose decoupled neurons in the awake state become coupled, modulating slow wave activity in



the sleep state (Bazhenov, 2002). We suggest that these slow wave thalamic oscillations
functionally correspond to the slow periodic activity generated by the rhythmic slow breathing
associated with sleep in mammals. The essential point, and prediction is that proper function of
cortical circuitry during sleep, whatever that function is (Wilson and McNaughton, 1993; Lee
and Wilson, 2002), requires or expects such slow periodic input because of an evolutionary link
between cortical circuitry and olfaction. It remains to be seen whether there is any specific
temporal relationship between rhythmic breathing during sleep, and the timing of slow
oscillations in the thalamus and neocortex.

References

1 Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol (Lond)
100:459-473.

2 Bhalla US, Bower JM (1997) Multiday recordings from olfactory bulb neurons in awake
freely moving rats: spatially and temporally organized variability in odorant response properties.
J Comput Neurosci 4:221-256.

3 Biella GR, Dickson CT, De Curtis M, (2001) Slow periodic activity in rhinal cortices of
the isolated guinea pig brain preparation. Soc Neurosci Abstr 27:847.14

4 Bower JM (1995) Reverse engineering the nervous system: an in vito, in vitro, and in
computo approach to understanding the mammalian olfactory system. In: An Introduction to
Neural and Electronic Networks, Second Edition. S. Zornetzer, J. Davis, and C. Lau, editors.
Academic Press. pp. 3-28.

5 Bremer F (1958) Cerebral and cerebellar potentials. Physiol Reviews 38:357-388

6 Bressler SL, Freeman WJ. Frequency analysis of olfactory system EEG in cat, rabbit, and
rat. (1980) Electroencephalogr Clin Neurophysiol. 50:19-24

7 Bressler SL (1984) Spatial organization of EEGs from olfactory bulb and cortex.
Electroencephalogr Clin Neurophysiol 57:270-276.

8 Buzsaki G (1998) Memory consolidation during sleep: a neurophysiological perspective.
J Sleep Res 7:17-23.

9 Carandini M, Ferster D (2000) Membrane potential and firing rate in cat primary visuél
cortex. J Neurosci 20:470-484.

10 Chaput MA, Buonviso N, Berthommer F (1992) Temporal patterns in spontaneous and
odour-evoked mitral cell discharges recorded in anesthetized freely breathing animals. Bur J

Neurosci 4:813-822.



11 Chaput MA (2000) EOG responses in anesthetized freely breathing rats. Chem Senses
25:695-701

12 Collins ER, Lang EJ, Pare D (1999) Spontaneous activity of the perirhinal cortex in
behaving cats. Neuroscience 89:1025-1039.

13 Collins DR, Pelletier JG, Pare D (2001) Slow and fast (gamma) neuronal oscillations in
the perirhinal cortex and lateral amygdala. J Neurophysiol 85:1661-1672.

14 Destexhe A., Sejnowski T.J., (2001), Thalamocortical assemblies, Monographs of the
Physiological Society (49), New York: Oxford UP.

15 Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in
top-down processing. Nat Rev Neurosci 2:704-716

16 Fontanini A, Vanier MC, Moore LE, Bower JM (2001) Membrane potential oscillations
in piriform cortex pyramidal cells: in vivo intracellular and local field potential recordings. Soc
Neurosci Abstr 27:726.5. ‘

17 Freeman WJ (1959) Distribution in time and space of prepyriform electrical activity. J
Neurophysiol 22:644-665.

18 Freeman WJ (1960) Correlation of electrical activity of prepyriform cortex and behavior
in cat. J Neurophysiol 23:111-131

19 Freeman WJ (2000) Neurodynamics: an exploration in mesoscopic brain dynamics.
London: Springer.

20 Haberly LB (1973) Unitary analysis of opossum prepyriform cortex. J Neurophysiol
36:762-774

21 Haberly LB, Bower JM (1984) Analysis of association fiber system in piriform cortex
with intracellular recording and staining techniques. J Neurophysiol 51:90-112.

22 Haberly LB (1990) Comparative aspects of olfactory cortex. In: Cerebral cortex (Jones
EG and Peeters A eds), pp 137-166. New Y ork: Plenum

23 Haberly L.B., (1998), Olfactory Cortex. In: The synaptic organization of the brain.
(Shepherd GM, ed), pp 377-416. New York: Oxford UP.

24 Hasselmo ME, Fransen E, Dickson C, Alonso AA (2000) Computational Modeling of
Entorhinal Cortex. Ann N'Y Acad Sci 911:418-446

25 Hopfield JJ (1995) Pattern recognition computation using action potential timing for

stimulus representation. Nature 376:33-36.



26 Ketchum K.L., Haberly L.B (1993), Membrane currents evoked by afferent fiber
stimulation in rat piriform cortex. 1. Current source-density analysis, J. Neurophysiol 69:248-
260.

27 Lee AK, Wilson MA. (2002) Memory of Sequential Experience in the Hippocampus
during Slow Wave Sleep. Neuron 36:1183-1194

28 Macrides F., Chorover S.L. (1972) Olfactory bulb units: activity correlates with
inhalation cycles and odor quality. Science 175:84-87.

29 Paxinos G, Watson C (1997) In: The rat brain in stereotaxic coordinates, Ed 3. San
Diego: Academic.

30 Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of
rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027-1034.

31 Sobel EC, Tank DW (1993) Timing of odor stimulation does not alter patterning of
olfactory bulb unit activity in freely breathing rats. J Neurophysiol 69:1331-1337.

32 Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JD
(1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature
392:282-286.

33 Steriade M, Nunez A, Amzica F (1993a) A novel slow (< 1 Hz) oscillation of neocortical
neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252-3265

34 Steriade M, Nunez A, Amzica F (1993b) Intracellular analysis of relations between the
slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J
Neurosci 13:3266-3283.

35 Steriade M (1997) Synchronized activities of coupled oscillators in the cerebral cortex
and thalamus at different levels of vigilance. Cereb Cortex 7:583-604

36 Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation.
Neuroscience 101:243-276

37 Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from
inside neocortical neurons. J Neurophysiol 85:1969-1985

38 Stripling JS, Patneau DK (1999) Potentiation of late components in olfactory bulb and
piriform cortex requires activation of cortical association fibers. Brain Res 841:27-42

39 Timofeev 1, Contreras D, Steriade M (1996a) Synaptic responsiveness of cortical and

thalamic neurones during various phases of slow sleep oscillation in cat. J Physiol 494:265-278



40 Timofeev I, Steriade M (1996b) Low-frequency rhythms in the thalamus of intact-cortex
and decorticated cats. J Neurophysiol 76:4152-4168.

41 Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M. Origin of slow cortical
oscillations in deafferented cortical slabs.(2000) Cereb Cortex 10:1185-1199.

42 Traub R.D., Jeffreys G.R., Whittington M.A. (1999), Fast oscillations incortical circuits,
Cambridge, MA: MIT Press.

43 Tsubone H (1990) Nasal 'pressure' receptors. Nippon Juigaku Zasshi 52:225-232

44 Wehr M, Laurent G (1996) Odour encoding by temporal sequences of firing in oscillating
neural assemblies. Nature 384:162-166

45 Wilson D (1998) Habituation of odor responses in the rat anterior piriform cortex. J
Neurophysiol 79:1425-1440

46 Wilson M, Bower JM (1992) Cortical oscillations and temporal interactions in a
computer simulation of piriform cortex. J Neurophysiol 67:981-995

47 Wilson MA and Bower JM (1991) A computer simulation of oscillatory behavior in
primary visual cerebral cortex. Neural Computation 3: 498-509

48  Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories
during sleep. Science 265:676-679




Dr. Linda Buck:
A. Combinatorial receptor codes for odors

In one part of this project, we asked how odorant receptors (ORs) in the nose encode the
identities of a vast array of environmental chemicals. Mice have ~1000 different ORs, each
expressed by a different subset of olfactory sensory neurons (OSNs) in the nose. Although the
ORs were identified in 1991, little was known about the odorants recognized by individual ORs
because it was not possible to functionally express ORs in heterologous cells where their
functions could be tested. To circumvent this problem, we developed an alternative strategy in
which we first used calcium imaging to identify mouse OSNs responsive to individual odorants
and then single cell reverse transcriptase (RT)-PCR to identify the OR genes expressed in those
neurons.

In initial studies, we asked whether individual OSNs actually do express only one OR gene, as
predicted. In our experiments we used a two step RT-PCR protocol. In the first step we
prepared and amplified cDNAs matching all (or most) mRNAs in the neuron. In the second step,
we used OR primers to amplify cDNAs from an aliquot of the first PCR reaction. Using
degenerate primers matching conserved sequence motifs in mammalian ORs, we identified OR
genes expressed in >50 single OSNs in these and other experiments. In every case, we identified
only one expressed OR per neuron. We also performed a number of control experiments to
further investigate not only the number of OR genes expressed per OSN, but also the ability of
our single cell RT-PCR method to accurately identify the OR genes expressed in individual
OSNs. The following results provided strong evidence that each OSN expresses only one OR
gene:

1. OR cDNAs obtained from the same OSN with different primers were identical in overlapping
regions.

2. All 60 cloned OR c¢cDNAs derived from the same neuron hybridized to the same OR probe in
each case tested.

3. When total cDNAs amplified from pairs of cells were mixed and then subjected to PCR with
OR primers, the OR ¢cDNAs obtained from each alone were present, indicating that more than
one OR cDNA could be detected if present.

4. When the first strand cDNAs made from individual neurons were split into 3 tubes and then
subjected to the two step PCR protocol, the OR ¢cDNAs amplified from the 3 tubes were
identical, excluding the possibility that the ORs detected with our method derive from
contaminating genomic DNA (since there are only two alleles of each gene).

For test odorants, we used a series of aliphatic odorants with straight carbon chains ranging in
length from 4 to 9 carbon atoms. We used four different classes of aliphatic odorants with the
same carbon chains, but different functional groups: carboxylic acids, aliphatic alcohols,
bromocarboxylic acids, and dicarboxylic acids. Only a small percentage of neurons (0-7% of
>600 neurons tested) responded to individual test odorants.




We identified ORs expressed in 14 neurons responsive to the test odorants. Since each neuron
expressed only one OR gene, the response profile of the neuron indicated the recognition profile
of the OR it expressed. Consistent with previous functional studies of OSNs, we found that
individual ORs can recognize multiple odorants. Our results also showed that a single odorant
can be recognized by multiple ORs. Importantly, however, different odorants were recognized
by different combinations of ORs. Thus the identities of different odorants are encoded by
different combinations of receptors. This combinatorial use of the OR family should allow, in
principle, for an ability to detect and discriminate an enormous variety of odorants whose
number vastly exceeds that of ORs. Even if each odorant were encoded by only three receptors,
this combinatorial coding scheme would generate almost one billion different odor codes.

Our studies also showed that there is tremendous diversity in the recognition properties of
different ORs. Both the carbon chain length of the odorants and their functional groups were
important for recognition for most of the ORs we identified, but the combinations of carbon
chain lengths and functional groups that could be recognized, or tolerated, by individual
receptors varied tremendously. In addition, we found that a single odorant can be recognized by
both highly related and divergent ORs.

In addition, these studies showed that even a slight change in the structure of an odorant, or a
change in its concentration, can change its "receptor code", the combination of ORs that
recognize the odorant. This suggests that changes in receptor code may underlie perceptual
alterations in humans that can result from changes in odorant structure or concentration.

In summary, our studies indicate that the olfactory system uses a combinatorial receptor coding
scheme to distinguish odors. In this scheme, the identities of different odorants are specified by
different combinations of receptors, but each receptor can be used as one component of the codes
for many odors. This scheme explains how 1000 different receptors can allow for the
discrimination of thousands or tens of thousands of different odors in the external environment.

B. Detection of odorants and pheromones by the vomeronasal organ

In addition to odorants, the olfactory system detects pheromones, chemicals released from animals that
stimulate hormonal changes or specific behaviors, such as mating or aggression, in members of the same
species. Many mammals have a second olfactory sense organ, the vomeronasal organ (VNO), which is
thought to be specialized to detect pheromones. In previous studies, we and others found that the VNO
and nose use different mechanisms to detect sensory ligands. Two distinct families of receptors are
expressed in the VNO, the VIR and V2R families, and the different families are expressed by different
subsets of VNO neurons. As in the nose, however, it appears that each neuron expresses only one
receptor geney

To determine how the VNO system encodes sensory information, we used calcium imaging to
analyze responses of single mouse VNO neurons to pheromones. We also examined responses
of these neurons to odorants.




We found that, similar to OSNs, VNO neurons exhibit transient increases in intracellular calcium
when they are exposed to 140mM KCl. These increases are likely to be due to influx of calcium
through voltage-sensitive calcium channels that open upon membrane depolarization by KCl.

In initial studies, we tested VNO neurons for responsiveness to six different mouse pheromones:
dehydro-exo-brevicomin, 2,5-dimethylpyrazine, E-beta-farnesene, 2-heptanone, lactol (6-
hydroxy-6-methyl-3-heptanone), and 2-sec butyl-4,5-dihydrothiazole. The pheromones were
tested at 100uM except for dehydro-exo-brevicomin (7uM), 2,5-dimethylpyrazine (1uM) and 2-
sec butyl-4,5-dihydrothiazole (7uM), because of limited supplies when the experiments were
done. In later studies supported by the NIH, we tested additional neurons with these pheromones
as well as with odorants. Interestingly, individual pheromones elicited responses in only about
0.3-0.7% of VNO neurons. Given that there are about 260 different types of VNO receptors, this
raises the possibility that some pheromones may be detected by only a single receptor type rather
than by a combination of receptors as in the nose. Surprisingly, we found that VNO neurons can
also detect some odorants, but not all. Given the neural pathway followed by signals generated
in the VNO, this raises the possibility that some odorants may also be capable of stimulating
hormonal changes or instinctive behaviors in mice.

C. The human OR gene repertoire

In the later part of this project, we characterized the human OR family. To identify human OR genes,
we searched the NCBI finished and unfinished human genome sequence databases. In these searches,
we used as queries either short amino acid sequence motifs conserved among mammalian ORs or a
diverse set of mouse ORs. With these queries, we searched for related sequences in all 6 possible
translated reading frames of the human genome sequence. We then isolated the DNA sequence
surrounding each match and translated it to determine the encoded protein. Classification as an OR gene
was based on visual inspection and, in some cases, by searching the NCBI protein database with the
translated gene.

In these studies, we identified 339 intact OR genes and 297 OR pseudogenes in the human genome.
Since the genome sequence was ~93% complete at the time we did this work, this is likely to represent
the full, or nearly full, repertoire of human ORs.

We next determined the chromosomal location of each human OR gene. We did this by examining the
chromosomal assignment of the clone in which each gene was found. Remarkably, we identified 51
different OR gene loci. We found OR gene loci on every human chromosome except chromosome 8
and the Y chromosome, a total of 21 different chromosomes.

OR genes can be divided into subfamilies on the basis of sequence relationships. Previous studies
support the idea that closely related OR genes that belong to the same subfamily may encode receptors
that recognize structurally-related odorants. Using a cutoff of 60% nucleotide sequence identity to
define members of the same subfamily, the intact human ORs assorted into 172 different subfamilies.
We found that members of the same subfamily are usually found at the same chromosomal locus. This
raises the possibility that different OR gene loci might have different functions in odorant recognition.



It has been proposed that humans may be relatively defective in olfactory perception compared
to mice and rats. This idea was based on preliminary indications that mice may have more OR
genes than humans. In other studies, which were supported by the NIH, we analyzed the mouse
OR gene repertoire. Comparison of human and mouse OR families showed that mice have about
2.7 times as many ORs as humans and 241 OR subfamilies compared to the 172 found in human.
When we performed a detailed comparison of human and mouse ORs, we found that most
human OR subfamilies are found in mouse. Interestingly, however, the mouse subfamilies
almost invariably have more member ORs. This suggests that humans and mice are likely to
detect many of the same odorant structural features, but that mice may have a superior ability to
discriminate odorants with highly related structures.




Dr. Noam Sobel:

The process whereby an odorant (physical entity) becomes a smell (percept) consists of several
stages. Initially, the odorant must be sniffed into the nasal passage. This crucial initial stage of
olfactory processing is often overlooked. Following this sampling phase, the odorants are
transduced by receptors ligning the olfactory epithelium. The transduced information is then
processed first at the level of olfactory bulb, and later olfactory cortex. This MURI investigated
olfactory processing from Detection to Classification, and our lab contributed to the study of
both processes:

Odorant detection -- Sampling

Sniffs are modulated in response to odor content. Higher concentrations of odor induce lesser-
volume sniffs. This phenomenon implicates a neural feedback mechanism that measures sensory
input (odor concentration) and modulates motor output (sniffing) accordingly. We are
interested in this modulatory mechanism both in order to better understand the olfactory process,
and to explore the implementation of such a mechanism in artificial olfactory devices (electronic
noses). We therefore first set out to ask what are the temporal parameters of this mechanism. A
stainless-steel computer-controlled olfactometer, equipped with mass flow controllers,
temperature and humidity control, and on-line photo-ionization detection, was coupled to a
highly sensitive pneumatotachograph that measured nasal flow. The olfactometer was used to
generate four ascending concentrations of the odorants propionic acid and phenethyl alcohol.
We found that sniff volume was inversely related to odor concentration (p < 0.0001).
Furthermore, sniffs were uniform and concentration-independent for the initial 150 msec, but
acquired a concentration-dependent flowrate as early as 160 msec following sniff onset for
propionic acid (p < .05), and 260 msec for phenethyl alcohol (p <.05). We published these
results in the MURI-supported manuscript by Johnson et al’.

These findings are important, firstly because they merit reframing our view of the temporal
aspects of olfaction. Olfaction is traditionally considered a "slow" sensory process. Our results
suggest otherwise, and point to rapid processing in olfaction. These results also raise important
questions regarding olfactory sensory transduction. The current view is that odorant transduction
takes around 150 ms*’. However, the sniff-modulation that we see within 160 ms, renders the
150 ms value unlikely (it is unreasonable that the modulation would be achieved within 10 ms).
Our finding of rapid processing has now also been replicated in rats®, suggesting that the
temporal dynamics of transduction should be revisited and revised.

Furthermore, the rapid olfactomotor function we have characterized suggests that olfactomotor
sniff feedback control is subcortical and may rely on neural mechanisms similar to those that
modulate eye movements to accommodate vision and ear movements to accommodate audition.
We have now embarked on localizing this mechanism in the brain, and have some evidence
suggesting that it may be cerebellar.
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Figure 1. First second of the mean sniff to low and high concentrations of a) propionic acid, b)
phenethyl alcohol. The blue line is the mean sniff to low concentration, and the red line is the
mean sniff to high concentration. Bars are standard error. The p-value from the associated
paired t-test is shown in yellow. Sniffs of propionic acid are significantly concentration
dependent by 160 msec, and sniffs of PEA are significantly concentration dependent by 260
msec.

Odorant detection -- Specific anosmia

The olfactory system is a model for neural plasticity in that its sensory neurons and
connectivity are continuously renewed throughout life®. An example of plasticity in the adult
human olfactory system is learned detection of androstenone (5 alpha-androst-16-en-3-one).
Approximately 30% of the adult human population does not perceive an odor when sniffing the
steroidal compound androstenone, but such sensitivity can be induced by repeated exposure’. To
understand the mechanisms of plasticity underlying this acquired capability, one must first
determine its location in the olfactory system. Is plasticity occurring peripherally at the olfactory
receptors in the nose, or centrally in the brain? To address this question we systematically
exposed only one nostril of androstenone non-detectors to androstenone and then tested the
unexposed, naive, nostril. Considering that the two olfactory pathways are not neurally
connected at the peripheral level, if the naive nostril had learned to detect androstenone, this
would suggest that plasticity occurred centrally. By contrast, if the naive nostril remained unable




to detect androstenone while the exposed nostril learned, this would suggest that plasticity
occurred peripherally.

We screened 42 subjects for androstenone detection using a four-trial, three-alternative-
forced-choice paradigm with criteria set at two or fewer correct trials. This screen yielded 12
non-detectors, a prevalence of non-detection (29%) equivalent to that in previous reports. These
non-detectors returned to the lab for ten-minute sessions daily, for 21 days, where one nostril
was continuously exposed to androstenone. The other nostril was blocked by insertion of an
inflatable plug. Five liters per minute of heated, humidified, bottled air were injected through the
plug to prevent any androstenone from entering the occluded nostril by reverse flow (retronasal
olfaction). At the beginning of the experiment this group was at 25% accuracy (SD=11%),
which is not significantly different from 33% chance (Binomial from chance: p =.9). Twenty-
one days of exposure doubled androstenone detection accuracy in the exposed (change from
baseline: t(11) = 3.3, p <.007. Binomial from chance: p <.002), and unexposed (change from
baseline: t(11) = 2.3, p <.04. Binomial from chance: p <.02) nostrils respectively (Fig. 2).
There was no significant difference in the extent of improvement between the exposed and
unexposed nostrils (t(11) = .4, p=.7). This finding indicates that the site of plasticity underlying
learned detection of androstenone communicates with both nostrils via a central component. We
published these results in the MURI-supported manuscript by Mainland et al’

Figure 2. Detection accuracy at pre-exposure and in the exposed and unexposed nostrils
following 21 days of exposure.

We took advantage of the paired anatomy of the olfactory system to find that the plasticity
underlying the emergence of androstenone detection has a central component. Such a
component may be likened to pattern recognition. Despite the equivalent retinal image, a CT
scan may appear all gray to the layperson while revealing intricate anatomy to the trained
neurologist. Similarly, the nose may have been delivering the same signal to the brain at the
beginning and end of this experiment, but through repeated exposure the brain may have learned
to make sense of a previously senseless signal. Such learning may have occurred at the olfactory




bulbs or in primary olfactory cortex, a substrate that shares information from both nostrils'® and
is optimized for olfactory learning'’.

Odorant classification

Two aspects of odor that are encoded by the olfactory system are intensity (high/low) and
valence (pleasant/unpleasant). These aspects are tightly linked. Most pleasant odorants become
more pleasant as their intensity increases, and most unpleasant odorants become more unpleasant
as their intensity increases'?. Some odorants, such as indol and skatol, dramatically change their
percept as intensity is varied. In other words, intensity is an axis of odorant classification. Here
we used fMRI to ask if these tightly linked dimensions of intensity and valence are encoded by
dissociable neural mechanisms. To dissociate the dimensions of intensity and valence, we
devised four stimuli using two odorants. High and low concentration versions of the odorants
citral and valeric acid were prepared. Citral smells lemony, fruity, and fragrant, and is perceived
by most as pleasant”. Valeric acid smells sweaty, rancid, and sickening and is perceived by
most as unpleasant’®. The concentrations used were selected through a psychophysical prestudy
where the high concentration citral was rated similar in intensity to the high concentration valeric
acid, and the low concentration citral was rated similar in intensity to the low concentration
valeric acid. Further, an intensity range was selected such that odor valence could be
manipulated with relative independence from intensity. Thus, the above design provided four
conditions [1. intense-pleasant 2. intense-unpleasant 3. unintense-pleasant 4. unintense-
unpleasant] that allowed for a dissociation of intensity from valence (Fig. 3).
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Figure 3: Ideal and observed odor space.

The abscissa represents odor intensity. The ordinate represents odor valence, with increasing
pleasantness represented as greater magnitudes. ( a) Odor selections were guided by an attempt
to construct an affective space whereby odor intensity and valence were manipulated
independently. High and low concentrations of the pleasant-smelling citral and unpleasant-
smelling valeric acid were psychophysically pre-selected to represent the four critical design



quadrants. ( b) Subjective intensity and valence estimates obtained after scanning. Horizontal
error bars reflect standard error of the mean (s.e.m.) for intensity ratings from 1 (low intensity) to
9 (high intensity) and vertical reflects s.e.m. for valence from 1 (very unpleasant) to 9 (very
pleasant). Consistent with the manipulation of odor valence, valeric acid was rated as
significantly more unpleasant than citral ( 71,15 =25.30, P<0.0001). Consistent with the
manipulation of odor intensity, high-concentration odors were rated as significantly more intense
than low-concentration odors ( 1,15 = 78.45, P< 0.0001). Independent manipulation of intensity
and valence was achieved for three of the four design quadrants; this was sufficient to separate
neural responses to intensity and valence. Low concentrations of citral and valeric acid were
equated for intensity ( £'1,15 = 0.10, P> 0.75), but differed in valence ( F1,15 = 6.46, P< 0.02);
high and low concentrations of valeric differed significantly in intensity ( 1,15 =20.31, P<
0.0004), but not in valence ( F'1,15 = 0.08, P> 0.78). High concentrations of citral were rated as
more intense ( F1,15 =10.25, P<0.007) than high concentrations of valeric, and more pleasant (
F1,15=17.68, P<0.01) than low citral. Consistent with their relative independence, there was no
significant association between individuals' estimations of odor intensity and valence for both
odorants (valeric, r=-0.19, P> 0.27; citral, = 0.29, P> 0.11).

We delivered the four stimuli interspersed with a clean air stimulus in a random ordered event-
related design to 16 participants while measuring brain activation with a 3 Tesla fMRI scanner.
We found that amygdala activation was associated with intensity and not valence of odors.
Conversely, distinct regions of orbitofrontal cortex were associated with valence independent of
intel}iity (Figure 4). We published these results in the MURI-supported manuscript by Anderson
etal”.

Consistent with the sensory nature of odor intensity, in the olfactory system initial
intensity coding occurs at the levels of the olfactory epithelium and bulb'®, and has been
implicated at primary olfactory cortex'®", which includes the amygdala'®. In contrast, our
findings suggest that higher-order hedonic differentiation occurs in secondary olfactory regions,
which include the orbitofrontal cortices'®. Thus, the present results suggest a major division of
the neural representation of affective space into more primary intensity and higher-order hedonic
components. In contrast with relatively preserved hedonic responses in patients with amygdala
lesions', it has been long known from stroke patients that the prefrontal cortices make important
contributions to the experience of hedonic tone?**!, with more recent studies highlighting
specifically the critical role of the orbitofrontal cortices® 2. Such critical prefrontal
contributions to hedonicity dovetail nicely with appraisal theories of human emotion that
emphasize how affective responses are not simply a reflection of the intrinsic quality (positive
vs. negative) of a stimulus, but result from interactions among the person, the situational context,
and the stimulus®. Such flexibility of hedonic response is a hallmark of orbitofrontal
representations, which are modulated by changes in affective relevance, as in the hungry versus
sated state of the perceiver’. Thus, unlike the evolutionarily conserved functions of the
amygdala, it appears that the malleability of human hedonic experience is characteristic of the
more flexible, integrative, and evolved functions of the prefrontal cortices.
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Figure 4: Functional regions of interest (fROI) defined by their correlation with individual
differences either in the evaluation of intensity, pleasantness or unpleasantness of the four

odor conditions and clean air.

Scatter plots depict the degree of association between individuals' fROI signal and valence and
intensity evaluations (depicted as circles in standardized units). The ordinate represents {MRI
signal, and the abscissa represents either the evaluation of odor intensity or valence for each
stimulus condition for each participant. ( a) A region in the right hemisphere extending from the
dorsal amygdala into the piriform cortex was correlated with the evaluation of intensity but not
valence. ( b) A bilateral subcallosal gyrus activation extending into the posteromedial
orbitofrontal cortex was correlated with the evaluation of pleasantness but not intensity. ( ¢) Left
anterior lateral and right anterior medial orbital cortical activations were correlated with the
evaluation of unpleasantness but not intensity.
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